Publications by authors named "Richard Weber"

Disrupting a criminal organization requires a significant deployment of human resources, time, information, and financial investment. In the early stages of an investigation, details about a specific crime are typically scarce, often with no known suspect. The literature has shown that an effective approach for analyzing criminal organizations is social network analysis.

View Article and Find Full Text PDF

The metastability of amorphous formulations poses barriers to their safe and widespread commercialization. The propensity of amorphous solid dispersions (ASDs) to crystallize is directly linked to their molecular structure. Amorphous structures are inherently complex and thus difficult to fully characterize by experiments, which makes structural simulations an attractive route for investigating which structural characteristics correlate with ASD stability.

View Article and Find Full Text PDF

Purpose Of Review: Delineation of the impact of elevated carbon dioxide and concomitant global warming on airborne allergens is performed.

Recent Findings: European tree pollen trends in general showed earlier start and end dates and increased total pollen release, with some differences both in locale and among species. Earlier flowering was also seen with grasses and weeds.

View Article and Find Full Text PDF

Advances in nuclear power reactors include the use of mixed oxide fuel, containing uranium and plutonium oxides. The high-temperature behaviour and structure of PuO above 1,800 K remain largely unexplored, and these conditions must be considered for reactor design and planning for the mitigation of severe accidents. Here, we measure the atomic structure of PuO through the melting transition up to 3,000 ± 50 K using X-ray scattering of aerodynamically levitated and laser-beam-heated samples, with O/Pu ranging from 1.

View Article and Find Full Text PDF

Amorphous solid dispersions (ASDs) are a widely studied formulation approach for improving the bioavailability of poorly water-soluble pharmaceuticals. Yet, a complete understanding remains lacking for how specific processing methods may influence ASDs' molecular structure. We prepare ketoprofen/polyvinylpyrrolidone (KTP/PVP) ASDs, ranging from 0-75 wt% KTP, using five different amorphization techniques: melt quenching, rotary evaporation with vacuum drying, spray drying, and acoustic levitation with either a premixed solution or mixing of separate co-sprayed solutions.

View Article and Find Full Text PDF

The relationships between materials processing and structure can vary between terrestrial and reduced gravity environments. As one case study, we compare the nonequilibrium melt processing of a rare-earth titanate, nominally 83TiO-17NdO, and the structure of its glassy and crystalline products. Density and thermal expansion for the liquid, supercooled liquid, and glass are measured over 300-1850 °C using the Electrostatic Levitation Furnace (ELF) in microgravity, and two replicate density measurements were reproducible to within 0.

View Article and Find Full Text PDF

A hyperbaric aerodynamic levitator has been developed for containerless materials research at specimen temperatures exceeding 2000 °C and pressures up to 10.3 MPa (1500 psi). This report describes the prototype instrument design and observations of the influence of specimen size, density, pressure, and flow rate on levitation behavior.

View Article and Find Full Text PDF

Low-dimensional (1D or 0D) models can describe the whole human blood circulation, for example, 1D distributed parameter model for the arterial network and 0D concentrated models for the heart or other organs. This paper presents a combined 1D-0D solver, called first_blood, that solves the governing equations of fluid dynamics to model low-dimensional hemodynamic effects. An extended method of characteristics is applied here to solve the momentum, and mass conservation equations and the viscoelastic wall model equation, mimicking the material properties of arterial walls.

View Article and Find Full Text PDF

Potential pitfalls of fractional flow reserve (FFR) measurements are well-known drawbacks of invasive physiology measurement, e.g., significant drift of the distal pressure trace may lead to the misclassification of stenoses.

View Article and Find Full Text PDF

To enhance the solubility of orally administered pharmaceuticals, liquid capsules or amorphous tablets are often preferred over crystalline drug products. However, little is known regarding the variation in bonding mechanisms between pharmaceutical molecules in their different disordered forms. In this study, liquid and melt-quenched glassy carbamazepine have been studied using high energy X-ray diffraction and modeled using Empirical Potential Structure Refinement.

View Article and Find Full Text PDF

Aluminosilicates (AS) are ubiquitous in ceramics, geology, and planetary science, and their glassy forms underpin vital technologies used in displays, waveguides, and lasers. In spite of this, the nonequilibrium behavior of the prototypical AS compound, mullite (40SiO-60AlO, or AS60), is not well understood. By deeply supercooling mullite-composition liquid via aerodynamic levitation, we observe metastable liquid-liquid unmixing that yields a transparent two-phase glass, comprising a nanoscale mixture of AS7 and AS62.

View Article and Find Full Text PDF

A growing number of universities worldwide use various forms of online and blended learning as part of their academic curricula. Furthermore, the recent changes caused by the COVID-19 pandemic have led to a drastic increase in importance and ubiquity of online education. Among the major advantages of e-learning is not only improving students' learning experience and widening their educational prospects, but also an opportunity to gain insights into students' learning processes with learning analytics.

View Article and Find Full Text PDF

Knowledge of patterns of pollen cross-reactivity is crucial for formulation of immunotherapy vaccines. As phylogenetic relationships have become better clarified through the use of tools such as gene sequencing, it is apparent that cross-reactivity reflects taxonomy in the vast majority of cases. Contradictory observations of unexpected cross-reactivity between distantly related plants require explanation.

View Article and Find Full Text PDF

Rare-earth titanates form very fragile liquids that can be made into glasses with useful optical properties. We investigate the atomic structure of 83TiO-17NdO glass using pair distribution function (PDF) analysis of X-ray and neutron diffraction with double isotope substitutions for both Ti and Nd. Six total structure factors are analyzed (5 neutron + 1 X-ray) to obtain complementary sensitivities to O and Ti/Nd scattering, and an empirical potential structure refinement (EPSR) provides a structural model consistent with the experimental measurements.

View Article and Find Full Text PDF

Even the most carefully designed water distribution network (WDN) can suffer from local capacity deficiencies as a result of the quick and unpredictable growth of the urbanization of new industrial sites. To solve this problem, this paper focuses on the identification of the best possible location for a new pipeline within an existing WDN, which maximizes the node-wise capacity. To determine the optimal solution, a parameter, namely pressure sensitivity, is defined, which can localize nodes with local capacity problems computationally efficiently.

View Article and Find Full Text PDF

Oak pollen is an important allergen in North America. The genus Quercus (oak) belongs to the family Fagaceae under the order Fagales. The objective of this article was to narratively review the oak pollen season, clinical and epidemiologic aspects of allergy to oak pollen, oak taxonomy, and oak allergen cross-reactivity, with a focus on the North American perspective.

View Article and Find Full Text PDF

Even the best-maintained water distribution network (WDN) might suffer pipe bursts occasionally, and the utility company must reconstruct the damaged sections of the system. The affected area must be segregated by closing the corresponding isolation valves; as a result, the required amount of drinking water might not be available. This paper explores the behaviour and topology of segments, especially their criticality from the viewpoint of the whole system.

View Article and Find Full Text PDF

The modeling of a loss-of-coolant-accident scenario involving nuclear fuels with FeCrAl cladding materials in consideration to replace a Zircaloy requires knowledge of the thermodynamics of oxidized structures. At temperatures higher than 1500 °C, oxidation of FeCrAl alloys forms (Fe,Cr,Al)O spinels. In situ high-energy X-ray diffraction in a conical nozzle levitator installed at beamline 6-ID-D of the APS was used to study the structural evolution of the oxides as a function of the temperature.

View Article and Find Full Text PDF

Background: Increasing evidence indicates that climate change is affecting the timing of pollen season and concentrations of allergenic pollens. To date, pollen trends and their associations with meteorological variables have not been studied in most of the United States.

Objective: The purpose of this study was to investigate the effects of weather and climate on pollen concentrations and pollen season timing in Denver, Colorado.

View Article and Find Full Text PDF

This study examines thermal gradients in ceramic oxide spheroids being aerodynamically levitated in a conical nozzle levitator (CNL) system equipped with a CO laser (10.6 µm wavelength). The CNL system is a versatile piece of equipment that can easily be coupled with advanced thermophysical and thermochemical measuring devices, such as diffraction/scattering (X-ray and neutron), nuclear magnetic resonance, and calorimetry, for the analysis of bulk spheroidal solids and liquids.

View Article and Find Full Text PDF

Structure and thermodynamics of pure cubic ZrO and HfO were studied computationally and experimentally from their tetragonal to cubic transition temperatures (2311 and 2530 °C) to their melting points (2710 and 2800 °C). Computations were performed using automated ab initio molecular dynamics techniques. High temperature synchrotron X-ray diffraction on laser heated aerodynamically levitated samples provided experimental data on volume change during tetragonal-to-cubic phase transformation (0.

View Article and Find Full Text PDF

Pyrochlore, an ordered derivative of the defect fluorite structure, shows complex disordering behavior as a function of composition, temperature, pressure, and radiation damage. We propose a thermodynamic model to calculate the disordering enthalpies for several REZrO (RE = Sm, Eu, Gd) pyrochlores from experimental site distribution data obtained by in situ high temperature synchrotron X-ray diffraction. Site occupancies show a gradual increase in disorder on both cation and anion sublattices with increasing temperature and even greater disorder is achieved close to the phase transition to defect fluorite.

View Article and Find Full Text PDF

Background: The most widespread ragweed (Ambrosia) species in North America are short ragweed (Ambrosia artemisiifolia; Amb a), giant ragweed (Ambrosia trifida; Amb t), and western ragweed (Ambrosia psilostachya; Amb p). Varied geographic distributions of ragweed species raise questions regarding the need for ragweed species-specific allergen immunotherapy.

Objective: To determine allergenic cross-reactivity among ragweed species by immunologic analyses of sera from subjects allergic to ragweed from North America and Europe.

View Article and Find Full Text PDF