Publications by authors named "Richard Wade-Martins"

Human induced pluripotent stem cells (iPSCs) provide powerful cellular models of Alzheimer's disease (AD) and offer many advantages over non-human models, including the potential to reflect variation in individual-specific pathophysiology and clinical symptoms. Previous studies have demonstrated that iPSC-neurons from individuals with Alzheimer's disease (AD) reflect clinical markers, including β-amyloid (Aβ) levels and synaptic vulnerability. However, despite neuronal loss being a key hallmark of AD pathology, many risk genes are predominantly expressed in glia, highlighting them as potential therapeutic targets.

View Article and Find Full Text PDF

In our brains, different neurons make appropriate connections; however, there remain few models of such circuits. We use an open microfluidic approach to build and study neuronal circuits in ways that fit easily into existing bio-medical workflows. Dumbbell-shaped circuits are built in minutes in standard Petri dishes; the aqueous phase is confined by fluid walls - interfaces between cell-growth medium and an immiscible fluorocarbon, FC40.

View Article and Find Full Text PDF

Understanding medium spiny neuron (MSN) physiology is essential to understand motor impairments in Parkinson's disease (PD) given the architecture of the basal ganglia. Here, we developed a custom three-chambered microfluidic platform and established a cortico-striato-nigral microcircuit partially recapitulating the striatal presynaptic landscape in vitro using induced pluripotent stem cell (iPSC)-derived neurons. We found that, cortical glutamatergic projections facilitated MSN synaptic activity, and dopaminergic transmission enhanced maturation of MSNs in vitro.

View Article and Find Full Text PDF

The brain is spatially organized and contains unique cell types, each performing diverse functions and exhibiting differential susceptibility to neurodegeneration. This is exemplified in Parkinson's disease with the preferential loss of dopaminergic neurons of the substantia nigra pars compacta. Using a Parkinson's transgenic model, we conducted a single-cell spatial transcriptomic and dopaminergic neuron translatomic analysis of young and old mouse brains.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is a serious brain condition mostly found in older people, causing memory and thinking problems due to harmful proteins buildup in the brain.
  • Scientists studied how removing a protein called tau from human brain cells could help understand the effects of another harmful protein called amyloid-beta (Aβ) on brain functions.
  • The research showed that taking away tau reduced nerve cell activity and helped protect against damage from Aβ, suggesting that lowering tau levels could be a possible way to help treat AD in the future.
View Article and Find Full Text PDF

Background: Progranulin (PGRN) is a lysosomal glycoprotein implicated in various neurodegenerative diseases, including frontotemporal dementia and neuronal ceroid lipofuscinosis. Over 70 mutations discovered in the GRN gene all result in reduced expression of the PGRN protein. Genetic and functional studies point toward a regulatory role for PGRN in lysosome functions.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how L-type voltage-gated calcium channels (LTCCs) influence dopamine (DA) release and neuron activity, particularly in relation to Parkinson's disease vulnerability.
  • It finds that LTCC function varies significantly between different types of dopamine neurons and is influenced by local biological factors such as sex and specific proteins related to Parkinson's risk.
  • The research reveals that factors promoting LTCC activity are linked to increased Parkinsonian risk, while protective factors can inhibit LTCC function, suggesting a complex interaction that may affect the survival of DA neurons in Parkinson's disease.
View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss, with additional pathophysiological involvement of non-neuronal cells such as microglia. The commonest ALS-associated genetic variant is a hexanucleotide repeat expansion (HRE) mutation in C9orf72. Here, we study its consequences for microglial function using human iPSC-derived microglia.

View Article and Find Full Text PDF

Friedreich ataxia (FRDA) is a rare genetic multisystem disorder caused by a pathological GAA trinucleotide repeat expansion in the FXN gene. The numerous drawbacks of historical cellular and rodent models of FRDA have caused difficulty in performing effective mechanistic and translational studies to investigate the disease. The recent discovery and subsequent development of induced pluripotent stem cell (iPSC) technology provides an exciting platform to enable enhanced disease modelling for studies of rare genetic diseases.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by a progressive deterioration of motor and cognitive functions. Although death of dopamine neurons is the hallmark pathology of PD, this is a late-stage disease process preceded by neuronal dysfunction. Here we describe early physiological perturbations in patient-derived induced pluripotent stem cell (iPSC)-dopamine neurons carrying the - mutation, a strong genetic risk factor for PD.

View Article and Find Full Text PDF

Mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene have been identified as one of the most common genetic causes of Parkinson's disease (PD). The LRRK2 PD-associated mutations LRRK2G2019S and LRRK2R1441C, located in the kinase domain and in the ROC-COR domain, respectively, have been demonstrated to impair mitochondrial function. Here, we sought to further our understanding of mitochondrial health and mitophagy by integrating data from LRRK2R1441C rat primary cortical and human induced pluripotent stem cell-derived dopamine (iPSC-DA) neuronal cultures as models of PD.

View Article and Find Full Text PDF

Variants at the GBA locus, encoding glucocerebrosidase, are the strongest common genetic risk factor for Parkinson's disease (PD). To understand GBA-related disease mechanisms, we use a multi-part-enrichment proteomics and post-translational modification (PTM) workflow, identifying large numbers of dysregulated proteins and PTMs in heterozygous GBA-N370S PD patient induced pluripotent stem cell (iPSC) dopamine neurons. Alterations in glycosylation status show disturbances in the autophagy-lysosomal pathway, which concur with upstream perturbations in mammalian target of rapamycin (mTOR) activation in GBA-PD neurons.

View Article and Find Full Text PDF

Progranulin (PGRN) is a lysosomal protein implicated in various neurodegenerative diseases. Over 70 mutations discovered in the gene all result in reduced expression of PGRN protein. However, the detailed molecular function of PGRN within lysosomes and the impact of PGRN deficiency on lysosomal biology remain unclear.

View Article and Find Full Text PDF

Parkinson's disease is the second most common neurodegenerative disease and yet the early pathophysiological events of the condition and sequences of dysfunction remain unclear. The loss of dopaminergic neurons and reduced levels of striatal dopamine are descriptions used interchangeably as underlying the motor deficits in Parkinson's disease. However, decades of research suggest that dopamine release deficits in Parkinson's disease do not occur only after cell death, but that there is dysfunction or dysregulation of axonal dopamine release before cell loss.

View Article and Find Full Text PDF

Biomarkers to aid diagnosis and delineate the progression of Parkinson's disease are vital for targeting treatment in the early phases of the disease. Here, we aim to discover a multi-protein panel representative of Parkinson's and make mechanistic inferences from protein expression profiles within the broader objective of finding novel biomarkers. We used aptamer-based technology (SomaLogic®) to measure proteins in 1599 serum samples, 85 cerebrospinal fluid samples and 37 brain tissue samples collected from two observational longitudinal cohorts (the Oxford Parkinson's Disease Centre and Tracking Parkinson's) and the Parkinson's Disease Brain Bank, respectively.

View Article and Find Full Text PDF

Alpha-synuclein (α-syn), a major component of Lewy bodies found in Parkinson's disease (PD) patients, has been found exported outside of cells and may mediate its toxicity via cell-to-cell transmission. Here, we reconstituted soluble, monomeric α-syn secretion by the expression of DnaJ homolog subfamily C member 5 (DNAJC5) in HEK293T cells. DNAJC5 undergoes palmitoylation and anchors on the membrane.

View Article and Find Full Text PDF

Establishing preclinical models of Alzheimer's disease that predict clinical outcomes remains a critically important, yet to date not fully realized, goal. Models derived from human cells offer considerable advantages over non-human models, including the potential to reflect some of the inter-individual differences that are apparent in patients. Here we report an approach using induced pluripotent stem cell-derived cortical neurons from people with early symptomatic Alzheimer's disease where we sought a match between individual disease characteristics in the cells with analogous characteristics in the people from whom they were derived.

View Article and Find Full Text PDF

Motor neuron diseases such as amyotrophic lateral sclerosis are primarily characterized by motor neuron degeneration with additional involvement of non-neuronal cells, in particular, microglia. In previous work, we have established protocols for the differentiation of iPSC-derived spinal motor neurons and microglia. Here, we combine both cell lineages and establish a novel co-culture of iPSC-derived spinal motor neurons and microglia, which is compatible with motor neuron identity and function.

View Article and Find Full Text PDF

The accumulation of toxic protein aggregates in multiple neurodegenerative diseases is associated with defects in the macroautophagy/autophagy-lysosome pathway. The amelioration of disease phenotypes across multiple models of neurodegeneration can be achieved through modulating the master regulator of lysosome function, TFEB (transcription factor EB). Using a novel multi-parameter high-throughput screen for cytoplasmic:nuclear translocation of endogenous TFEB and the related transcription factor TFE3, we screened the Published Kinase Inhibitor Set 2 (PKIS2) library as proof of principle and to identify kinase regulators of TFEB and TFE3.

View Article and Find Full Text PDF

Mutations in LRRK2 increase its kinase activity and cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab proteins which allows for their binding to RILPL1. The phospho-Rab/RILPL1 interaction causes deficits in ciliogenesis and interferes with the cohesion of duplicated centrosomes.

View Article and Find Full Text PDF

A large hexanucleotide repeat expansion in the C9ORF72 gene is the most prevalent cause of amyotrophic lateral sclerosis (ALS). To better understand neuronal dysfunction during ALS progression, we studied motor neuron (MN) cultures derived from iPSC lines generated from C9ORF72 (C9) expansion carriers and unaffected controls. C9 and control MN cultures showed comparable mRNA levels for MN markers SMI-32, HB9 and ISL1 and similar MN yields (> 50% TUJ1/SMI-32 double-positive MNs).

View Article and Find Full Text PDF

Microbiota have increasingly become implicated in predisposition to human diseases, including neurodegenerative disorders such as Parkinson's disease (PD). Traditionally, a central nervous system (CNS)-centric approach to understanding PD has predominated; however, an association of the gut with PD has existed since Parkinson himself reported the disease. The gut-brain axis refers to the bidirectional communication between the gastrointestinal tract (GIT) and the brain.

View Article and Find Full Text PDF

PARK2 (parkin) mutations cause early-onset Parkinson's disease (PD). Parkin is an ubiquitin E3 ligase that participates in several cellular functions, including mitochondrial homeostasis. However, the specific metabolomic changes caused by parkin depletion remain unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Most neurodegenerative disorders lack cures, but precision medicine offers promising avenues for treatment, particularly for dopamine transporter deficiency syndrome (DTDS), which is tied to mutations in the dopamine transporter gene.
  • Researchers created a dopaminergic neuron model from patient-derived induced pluripotent stem cells (iPSCs) to study DTDS and found that a pharmacochaperone could partially restore dopamine transporter activity, while gene therapy showed more comprehensive benefits.
  • Testing in a knockout mouse model of DTDS demonstrated that targeted adeno-associated virus (AAV) gene therapy could significantly improve motor function and neuron survival, highlighting its potential for clinical application in treating DTDS.
View Article and Find Full Text PDF