The intestinal mucosal barrier is a dynamic system that allows nutrient uptake, stimulates healthy microbe-host interactions, and prevents invasion by pathogens. The mucosa consists of epithelial cells connected by cellular junctions that regulate the passage of nutrients covered by a mucus layer that plays an important role in host-microbiome interactions. Mimicking the intestinal mucosa for assays, particularly the generation of a mucus layer, has proven to be challenging.
View Article and Find Full Text PDFActivation of the endoplasmic reticulum (ER)-resident adaptor protein STING, a component of a cytosolic DNA-sensing pathway, induces the transcription of genes encoding type I interferons (IFNs) and other proinflammatory factors. Because STING is activated at the Golgi apparatus, control of the localization and activation of STING is important in stimulating antiviral and antitumor immune responses. Through a genome-wide CRISPR interference screen, we found that STING activation required the Golgi-resident protein ACBD3, which promotes the generation of phosphatidylinositol 4-phosphate (PI4P) at the trans-Golgi network, as well as other PI4P-associated proteins.
View Article and Find Full Text PDFGlycosylated mucin proteins contribute to the essential barrier function of the intestinal epithelium. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in human intestinal epithelial monolayers, MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane.
View Article and Find Full Text PDFMucins play an essential role in protecting the respiratory tract against microbial infections while also acting as binding sites for bacterial and viral adhesins. The heavily O-glycosylated gel-forming mucins MUC5AC and MUC5B eliminate pathogens by mucociliary clearance. Transmembrane mucins MUC1, MUC4, and MUC16 can restrict microbial invasion at the apical surface of the epithelium.
View Article and Find Full Text PDFNaked viruses can escape host cells before the induction of lysis via release in extracellular vesicles (EVs). These nanosized EVs cloak the secreted virus particles in a host-derived membrane, which alters virus-host interactions that affect infection efficiency and antiviral immunity. Currently, little is known about the viral and host factors regulating this form of virus release.
View Article and Find Full Text PDFLipid droplets store neutral lipids, primarily triacylglycerol and steryl esters. Seipin plays a role in lipid droplet biogenesis and is thought to determine the site of lipid droplet biogenesis and the size of newly formed lipid droplets. Here we show a seipin-independent pathway of lipid droplet biogenesis.
View Article and Find Full Text PDFAt the intestinal host-microbe interface, the transmembrane mucin MUC1 can function as a physical barrier as well as a receptor for bacteria. MUC1 also influences epithelial cell morphology and receptor function. Various bacterial pathogens can exploit integrins to infect eukaryotic cells.
View Article and Find Full Text PDFThe trimeric hemagglutinin-esterase fusion protein (HEF) of influenza D virus (IDV) binds 9-O-acetylated sialic acid receptors, which are expressed in various host species. While cattle are the main reservoir for IDV, the viral genome has also been detected in domestic pigs. In addition, antibodies against IDV have been detected in other farm animals such as sheep, goats, and horses, and even in farmers working with IDV positive animals.
View Article and Find Full Text PDFThe cellular invasion machinery of the enteric pathogen Salmonella consists of a type III secretion system (T3SS) with injectable virulence factors that induce uptake by macropinocytosis. Salmonella invasion at the apical surface of intestinal epithelial cells is inefficient, presumably because of a glycosylated barrier formed by transmembrane mucins that prevents T3SS contact with host cells. We observed that Salmonella is capable of apical invasion of intestinal epithelial cells that express the transmembrane mucin MUC1.
View Article and Find Full Text PDFP. aeruginosa is a notorious biofilm producer that causes a wide variety of acute and chronic infections. In this study the in vitro anti-biofilm activity of 13 Host Defence Peptides from different species was tested against P.
View Article and Find Full Text PDFMetabolic rich and poor conditions are both characterized by elevated free fatty acid levels and have been associated with impaired female fertility. In particular, saturated free fatty acids have a dose-dependent negative impact on oocyte developmental competence, while monounsaturated free fatty acids appear less harmful. Cumulus cells seem to protect the oocyte against free fatty acids, and the aim of this study was to determine the mechanism behind this protection In particular, the role of the enzyme stearoyl-CoA desaturase (SCD) that converts saturated into monounsaturated fatty acids was investigated.
View Article and Find Full Text PDFIn mammalian preimplantation development, pluripotent cells are set aside from cells that contribute to extra-embryonic tissues. Although the pluripotent cell population of mouse and human embryos can be cultured as embryonic stem cells, little is known about the pathways involved in formation of a bovine pluripotent cell population, nor how to maintain these cells in vitro. The objective of this study was to determine the transcriptomic profile related to bovine pluripotency.
View Article and Find Full Text PDFThe recent development of 3D-liver stem cell cultures (hepatic organoids) opens up new avenues for gene and/or stem cell therapy to treat liver disease. To test safety and efficacy, a relevant large animal model is essential but not yet established. Because of its shared pathologies and disease pathways, the dog is considered the best model for human liver disease.
View Article and Find Full Text PDFItraconazole (ITZ) is a well-known antifungal agent that also has anticancer activity. In this study, we identify ITZ as a broad-spectrum inhibitor of enteroviruses (e.g.
View Article and Find Full Text PDFIsolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV).
View Article and Find Full Text PDFAntimicrob Agents Chemother
November 2014
Antifungal mechanisms of action of two cathelicidins, chicken CATH-2 and human LL-37, were studied and compared with the mode of action of the salivary peptide histatin 5 (Hst5). Candida albicans was used as a model organism for fungal pathogens. Analysis by live-cell imaging showed that the peptides kill C.
View Article and Find Full Text PDF