The mode of action (MoA) of the 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicides in mammals is well described and is generally accepted to be due to a build-up of excess systemic tyrosine which is associated with the range of adverse effects reported in laboratory animals. What is less well accepted is the basis for the marked difference in the effects of HPPD inhibitors that has been observed across experimental species and humans, where some species show significant toxicities whereas in other species exposure causes few effects. The activity of the catabolic enzyme tyrosine aminotransferase (TAT) varies across species including humans and it is hypothesized that this primarily accounts for the different levels of tyrosinemia observed between species and leads to the subsequent differences in toxicity.
View Article and Find Full Text PDFToxicol Lett
December 2013
The European regulation on plant protection products (1107/2009) and other related legislation only support the marketing and use of chemical products on the basis that they do not induce endocrine disruption in humans or wildlife species. This legislation would appear to make the assumption that endocrine active chemicals should be managed differently from other chemicals presumably due to an assumed lack of a threshold for adverse effects. In the absence of agreed scientific criteria and guidance on how to identify and evaluate endocrine activity and disruption within these pieces of legislation, a European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) task force was formed to provide scientific criteria that may be used within the context of these three legislative documents.
View Article and Find Full Text PDFThe mode of action (MoA) of the herbicide mesotrione has been empirically established in experimental animals. In this review, we evaluate this MoA and the relevance of this MoA to humans against accepted scientific criteria. The key events in the MoA involve inhibition of the enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD), the second enzyme in the tyrosine catabolic pathway, resulting in excess plasma tyrosine (tyrosinemia).
View Article and Find Full Text PDFRegulatory tests investigating pesticide carcinogenicity potential routinely comprise a battery of in vitro and in vivo genotoxicity studies and two cancer bioassays, one in rats and one in mice. The genotoxicity testing strategy essentially ensures that genotoxic compounds are eliminated, and any carcinogens identified in subsequent lifetime studies are probably nongenotoxic in character. Assessment of 202 pesticide evaluations from the European Union review programme under Directive 91/414/EEC indicated that the mouse carcinogenicity study contributed little or nothing to either derivation of an acceptable daily intake (ADI) for assessment of chronic risk to humans, or hazard classification for labelling purposes.
View Article and Find Full Text PDFThe present studies report the effects on neonatal rats of oral exposure to genistein during the period from birth to postnatal day (PND) 21 to generate data for use in assessing human risk following oral ingestion of genistein. Failure to demonstrate significant exposure of the newborn pups via the mothers milk led us to subcutaneously inject genistein into the pups over the period PND 1-7, followed by daily gavage dosing to PND 21. The targeted doses throughout were 4 mg/kg/day genistein (equivalent to the average exposure of infants to total isoflavones in soy milk) and a dose 10 times higher than this (40 mg/kg genistein).
View Article and Find Full Text PDFOne of the most important quantitative outputs from toxicity studies is identification of the highest exposure level (dose or concentration) that does not cause treatment related effects that could be considered relevant to human health risk assessment. A review of regulatory and other scientific literature and of current practices has revealed a lack of consistency in definition and application of frequently used terms such as No Observed Effect Level (NOEL), No Observed Adverse Effect Level (NOAEL), adverse effect, biologically significant effect, or toxicologically significant effect. Moreover, no coherent criteria were found that could be used to guide consistent interpretation of toxicity studies, including the recognition and differentiation between adverse and nonadverse effects.
View Article and Find Full Text PDF