Publications by authors named "Richard W Jobson"

Article Synopsis
  • Angiosperms are vital for ecosystems and human life, making it important to understand their evolutionary history to grasp their ecological dominance.
  • The study builds an extensive tree of life for about 8,000 angiosperm genera using 353 nuclear genes, significantly increasing the sampling size and refining earlier classifications.
  • The findings reveal a complex evolutionary history marked by high gene tree conflict and rapid diversification, particularly during the early angiosperm evolution, with shifts in diversification rates linked to global temperature changes.
View Article and Find Full Text PDF

Plastid molecular phylogenies that broadly sampled angiosperm lineages imply that carnivorous plants evolved at least 11 times independently in 13 families and 6 orders. Within and between these clades, the different prey capture strategies involving flypaper and pitfall structures arose in parallel with the subsequent evolution of snap traps and suction bladders. Attempts to discern the deep ontological history of carnivorous structures using multigene phylogenies have provided a plastid-level picture of sister relationships at the family level.

View Article and Find Full Text PDF

Ecotypes are distinct populations within a species that are adapted to specific environmental conditions. Understanding how these ecotypes become established, and how they interact when reunited, is fundamental to elucidating how ecological adaptations are maintained. This study focuses on Themeda triandra, a dominant grassland species across Asia, Africa and Australia.

View Article and Find Full Text PDF

Eriocaulon is a genus of c. 470 aquatic and wetland species of the monocot plant family Eriocaulaceae. It is widely distributed in Africa, Asia and America, with centres of species richness in the tropics.

View Article and Find Full Text PDF

Background And Aims: In Utricularia nelumbifolia , the nuclei of placental nutritive tissue possess unusually shaped projections not known to occur in any other flowering plant. The main aim of the study was to document the morphology and ultrastructure of these unusual nuclei. In addition, the literature was searched to find examples of nuclear tubular projections in other plant groups, and the nuclei of closely related species of Utricularia (i.

View Article and Find Full Text PDF

Across the streptophyte lineage, which includes charophycean algae and embryophytic plants, there have been at least four independent transitions to the terrestrial habitat. One of these involved the evolution of embryophytes (bryophytes and tracheophytes) from a charophycean ancestor, while others involved the earliest branching lineages, containing the monotypic genera Mesostigma and Chlorokybus, and within the Klebsormidiales and Zygnematales lineages. To overcome heat, water stress, and increased exposure to ultraviolet radiation, which must have accompanied these transitions, adaptive mechanisms would have been required.

View Article and Find Full Text PDF

Recent studies across animal phyla have suggested a possible link between amino acid compositional shifts and adaptive evolution across mitochondrial proteomes enabling longer lifespans. These studies examined associations of a gradual loss of cysteine (Cys) residues, increased usage of methionine (Met), and increased usage of threonine (Thr), with the evolution of longevity. Here, we examine all three hypotheses in a framework that considers nucleotide composition.

View Article and Find Full Text PDF

Carnivorous plants inhabit nutrient-poor environments, where prominent targets of prey capture are organic nitrogen and phosphorus. Some carnivorous plants also acquire carbon from their victims. A new report focusing on Utricularia, the bladderwort, demonstrates that carbon assimilated from photosynthesis is paradoxically secreted into the trapping environment, where it may help to support a mutualistic bacterial community.

View Article and Find Full Text PDF

Aging is thought to occur through the accumulation of biochemical damage affecting DNA, proteins, and lipids. The major source of cellular damage involves the generation of reactive oxygen species produced during mitochondrial respiratory activity of the electron transport chain. Energetic metabolism, antioxidative processes, genome maintenance, and cell cycle are the cellular functions most commonly associated with aging, from experimental studies of model organisms.

View Article and Find Full Text PDF

The evolutionary rate of mitochondrial DNA (mtDNA) is highly variable across lineages in animals, and particularly in mammals. This variation has been interpreted as reflecting variations in metabolic rate: mitochondrial respiratory activity would tend to generate mutagenic agents, thus increasing the mutation rate. Here we review recent evidence suggesting that a direct, mechanical effect of species metabolic rate on mtDNA evolutionary rate is unlikely.

View Article and Find Full Text PDF

Background: The C<-->U substitution types of RNA editing have been observed frequently in organellar genomes of land plants. Although various attempts have been made to explain why such a seemingly inefficient genetic mechanism would have evolved, no satisfactory explanation exists in our view. In this study, we examined editing patterns in chloroplast genomes of the hornwort Anthoceros formosae and the fern Adiantum capillus-veneris and in mitochondrial genomes of the angiosperms Arabidopsis thaliana, Beta vulgaris and Oryza sativa, to gain an understanding of the question of how RNA editing originated.

View Article and Find Full Text PDF

It is often difficult to determine which of the sequence and structural differences between divergent members of multigene families are functionally important. Here we use a laboratory evolution approach to determine functionally important structural differences between two distantly related disulfide isomerases, DsbC and DsbG from Escherichia coli. Surprisingly, we found single amino acid substitutions in DsbG that were able to complement dsbC in vivo and have more DsbC-like isomerase activity in vitro.

View Article and Find Full Text PDF

Much recent attention in the study of adaptation of organismal form has centered on developmental regulation. As such, the highly conserved respiratory machinery of eukaryotic cells might seem an unlikely target for selection supporting novel morphologies. We demonstrate that a dramatic molecular evolutionary rate increase in subunit I of cytochrome c oxidase (COX) from an active-trapping lineage of carnivorous plants is caused by positive Darwinian selection.

View Article and Find Full Text PDF

The snap-trap leaves of the aquatic waterwheel plant (Aldrovanda) resemble those of Venus' flytrap (Dionaea), its distribution and habit are reminiscent of bladderworts (Utricularia), but it shares many reproductive characters with sundews (Drosera). Moreover, Aldrovanda has never been included in molecular phylogenetic studies, so it has been unclear whether snap-traps evolved only once or more than once among angiosperms. Using sequences from nuclear 18S and plastid rbcL, atpB, and matK genes, we show that Aldrovanda is sister to Dionaea, and this pair is sister to Drosera.

View Article and Find Full Text PDF

In the carnivorous plant family Lentibulariaceae, the bladderwort lineage (Utricularia and Genlisea) is substantially more species-rich and morphologically divergent than its sister lineage, the butterworts (Pinguicula). Bladderworts have a relaxed body plan that has permitted the evolution of terrestrial, epiphytic, and aquatic forms that capture prey in intricately designed suction bladders or corkscrew-shaped lobster-pot traps. In contrast, the flypaper-trapping butterworts maintain vegetative structures typical of angiosperms.

View Article and Find Full Text PDF