Interleukin-32 (IL-32) is a nonclassical cytokine expressed in cancers, inflammatory diseases, and infections. Its expression is regulated by two different oxygen sensing systems; HIF1α and cysteamine dioxygenase (ADO), indicating that IL-32 may be involved in the response to hypoxia. We here demonstrate that endogenously expressed, intracellular IL-32 interacts with components of the mitochondrial respiratory chain and promotes oxidative phosphorylation.
View Article and Find Full Text PDFMultiple myeloma is characterized by accumulation of malignant plasma cells in the bone marrow. Most patients suffer from an osteolytic bone disease, caused by increased bone degradation and reduced bone formation. Bone morphogenetic protein 4 (BMP4) is important for both pre- and postnatal bone formation and induces growth arrest and apoptosis of myeloma cells.
View Article and Find Full Text PDFTo begin to understand the mechanisms that regulate self-renewal, differentiation, and transformation of human hematopoietic stem cells or to evaluate the efficacy of novel treatment modalities, stem cells need to be studied in their own species-specific microenvironment. By implanting ceramic scaffolds coated with human mesenchymal stromal cells into immune-deficient mice, we were able to mimic the human bone marrow niche. Thus, we have established a human leukemia xenograft mouse model in which a large cohort of patient samples successfully engrafted, which covered all of the important genetic and risk subgroups.
View Article and Find Full Text PDFEmerging evidence suggests that FcγR-mediated cross-linking of tumor-bound mAbs may induce signaling in tumor cells that contributes to their therapeutic activity. In this study, we show that daratumumab (DARA), a therapeutic human CD38 mAb with a broad-spectrum killing activity, is able to induce programmed cell death (PCD) of CD38(+) multiple myeloma tumor cell lines when cross-linked in vitro by secondary Abs or via an FcγR. By comparing DARA efficacy in a syngeneic in vivo tumor model using FcRγ-chain knockout or NOTAM mice carrying a signaling-inactive FcRγ-chain, we found that the inhibitory FcγRIIb as well as activating FcγRs induce DARA cross-linking-mediated PCD.
View Article and Find Full Text PDFThe anti-CD38 monoclonal antibody daratumumab is well tolerated and has high single agent activity in heavily pretreated relapsed and refractory multiple myeloma (MM). However, not all patients respond, and many patients eventually develop progressive disease to daratumumab monotherapy. We therefore examined whether pretreatment expression levels of CD38 and complement-inhibitory proteins (CIPs) are associated with response and whether changes in expression of these proteins contribute to development of resistance.
View Article and Find Full Text PDFPolycomb proteins are classical regulators of stem cell self-renewal and cell lineage commitment and are frequently deregulated in cancer. Here, we find that the non-canonical PRC1.1 complex, as identified by mass-spectrometry-based proteomics, is critically important for human leukemic stem cells.
View Article and Find Full Text PDFDaratumumab (DARA) is a human CD38-specific IgG1 antibody that is in clinical development for the treatment of multiple myeloma (MM). The potential for IgG1 antibodies to induce macrophage-mediated phagocytosis, in combination with the known presence of macrophages in the tumor microenvironment in MM and other hematological tumors, led us to investigate the contribution of antibody-dependent, macrophage-mediated phagocytosis to DARA's mechanism of action. Live cell imaging revealed that DARA efficiently induced macrophage-mediated phagocytosis, in which individual macrophages rapidly and sequentially engulfed multiple tumor cells.
View Article and Find Full Text PDFPurpose: Novel therapeutic agents have significantly improved the survival of patients with multiple myeloma. Nonetheless, the prognosis of patients with multiple myeloma who become refractory to the novel agents lenalidomide and bortezomib is very poor, indicating the urgent need for new therapeutic options for these patients. The human CD38 monoclonal antibody daratumumab is being evaluated as a novel therapy for multiple myeloma.
View Article and Find Full Text PDFPurpose: MLN9708 (ixazomib citrate), which hydrolyzes to pharmacologically active MLN2238 (ixazomib), is a next-generation proteasome inhibitor with demonstrated preclinical and clinical antimyeloma activity, but yet with an unknown effect on myeloma bone disease. Here, we investigated its bone anabolic and antiresorptive effects in the myeloma setting and in comparison with bortezomib in preclinical models.
Experimental Design: The in vitro effect of MLN2238 was tested on osteoclasts and osteoclast precursors from healthy donors and patients with myeloma, and on osteoprogenitors derived from bone marrow mesenchymal stem cells also from both origins.
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that is frequently associated with activating mutations in NOTCH1 and dysregulation of MYC. Here, we performed 2 complementary screens to identify FDA-approved drugs and drug-like small molecules with activity against T-ALL. We developed a zebrafish system to screen small molecules for toxic activity toward MYC-overexpressing thymocytes and used a human T-ALL cell line to screen for small molecules that synergize with Notch inhibitors.
View Article and Find Full Text PDFIn recent years, significant progress has been achieved in the characterization of the transcriptional profiles, gene mutations and structural chromosomal lesions in myeloma cells. These studies have identified many candidate therapeutic targets, which are recurrently deregulated in myeloma cells. However, these targets do not appear, at least individually, to represent universal driver(s) of this disease.
View Article and Find Full Text PDFPurpose: Cellular immunotherapy frequently fails to induce sustained remissions in patients with multiple myeloma, indicating the ability of multiple myeloma cells to evade cellular immunity. Toward a better understanding and effective therapeutic modulation of multiple myeloma immune evasion mechanisms, we here investigated the role of the tumor microenvironment in rendering multiple myeloma cells resistant to the cytotoxic machinery of T cells.
Experimental Design: Using a compartment-specific, bioluminescence imaging-based assay system, we measured the lysis of luciferase-transduced multiple myeloma cells by CD4(+) or CD8(+) CTLs in the presence versus absence of adherent accessory cells of the bone marrow microenvironment.
Lenalidomide is an amino-substituted derivative of thalidomide with direct antiproliferative and cytotoxic effects on the myeloma tumor cell, as well as antiangiogenic activity and immunomodulatory effects. Together with the introduction of bortezomib and thalidomide, lenalidomide has significantly improved the survival of patients with relapsed and refractory myeloma. The most common adverse events associated with lenalidomide include fatigue, skin rash, thrombocytopenia, and neutropenia.
View Article and Find Full Text PDFInteractions within the hematopoietic niche in the BM microenvironment are essential for maintenance of the stem cell pool. In addition, this niche is thought to serve as a sanctuary site for malignant progenitors during chemotherapy. Therapy resistance induced by interactions with the BM microenvironment is a major drawback in the treatment of hematologic malignancies and bone-metastasizing solid tumors.
View Article and Find Full Text PDFThe Wnt/β-catenin pathway plays a crucial role in the pathogenesis of various human cancers. In multiple myeloma (MM), aberrant auto-and/or paracrine activation of canonical Wnt signaling promotes proliferation and dissemination, while overexpression of the Wnt inhibitor Dickkopf1 (DKK1) by MM cells contributes to osteolytic bone disease by inhibiting osteoblast differentiation. Since DKK1 itself is a target of TCF/β-catenin mediated transcription, these findings suggest that DKK1 is part of a negative feedback loop in MM and may act as a tumor suppressor.
View Article and Find Full Text PDFBackground: Multiple myeloma is a hematologic malignancy characterized by a clonal expansion of malignant plasma cells in the bone marrow, which is accompanied by the development of osteolytic lesions and/or diffuse osteopenia. The intricate bi-directional interaction with the bone marrow microenvironment plays a critical role in sustaining the growth and survival of myeloma cells during tumor progression. Identification and functional analysis of the (adhesion) molecules involved in this interaction will provide important insights into the pathogenesis of multiple myeloma.
View Article and Find Full Text PDFThe development and antigen-dependent differentiation of B lymphocytes are orchestrated by an array of growth factors, cytokines, and chemokines that require tight spatiotemporal regulation. Heparan sulfate proteoglycans specifically bind and regulate the bioavailability of soluble protein ligands, but their role in the immune system has remained largely unexplored. Modification of heparan sulfate by glucuronyl C5-epimerase (Glce) controls heparan sulfate-chain flexibility and thereby affects ligand binding.
View Article and Find Full Text PDFPurpose: The essential role of CD4(+) T cells as helpers of anticancer immunity is indisputable. Little is known, however, about their capacity to serve as effector cells in cancer treatment. Therefore, we explored the efficacy of immunotherapy with sole CD4(+) cytotoxic human T cells directed at a hematopoietic-restricted minor histocompatibility antigen (mHag).
View Article and Find Full Text PDFExpression of the heparan sulfate proteoglycan syndecan-1 is a hallmark of both normal and multiple myeloma (MM) plasma cells. Syndecan-1 could affect plasma cell fate by strengthening integrin-mediated adhesion via its core protein and/or by accommodating and presenting soluble factors via its HS side chains. Here, we show that inducible RNAi-mediated knockdown of syndecan-1 in human MM cells leads to reduced growth rates and a strong increase of apoptosis.
View Article and Find Full Text PDFRecent studies in mice have shown a role for the canonical WNT pathway in lymphocyte development. Because cancers often arise as a result of aberrant activation of signaling cascades that normally promote the self-renewal and expansion of their progenitor cells, we hypothesized that activation of the WNT pathway might contribute to the pathogenesis of lymphoproliferative disease. Therefore, we screened a large panel (n = 162) of non-Hodgkin lymphomas (NHL), including all major WHO categories, for nuclear expression of beta-catenin, a hallmark of "active" WNT signaling.
View Article and Find Full Text PDFBackground: The development and preclinical testing of novel immunotherapy strategies for multiple myeloma can benefit substantially from a humanized animal model that enables quantitative real-time monitoring of tumor progression. Here we have explored the feasibility of establishing such a model in immunodeficient RAG2(-/-)gammac(-/-) mice, by utilizing non-invasive bioluminescent imaging for real-time monitoring of multiple myeloma cell growth.
Design And Methods: Seven multiple myeloma cell lines, marked with a green fluorescent protein firefly luciferase fusion gene, were intravenously injected into RAG2(-/-)gammac(-/-) mice.