Weightlessness induces a cephalad shift of blood and cerebrospinal fluid that may increase intracranial pressure (ICP) during spaceflight, whereas lower body negative pressure (LBNP) may provide an opportunity to caudally redistribute fluids and lower ICP. To investigate the effects of spaceflight and LBNP on noninvasive indicators of ICP (nICP), we studied 13 crewmembers before and after spaceflight in seated, supine, and 15° head-down tilt postures, and at ∼45 and ∼150 days of spaceflight with and without 25 mmHg LBNP. We used four techniques to quantify nICP: cerebral and cochlear fluid pressure (CCFP), otoacoustic emissions (OAE), ultrasound measures of optic nerve sheath diameter (ONSD), and ultrasound-based internal jugular vein pressure (IJVp).
View Article and Find Full Text PDFAcoustic dosimetry (AD) data collected on the International Space Station (ISS) were analysed to investigate the impact of impulse noise on crew noise exposure. The noise exposure during work (LAeq16h) and sleep (LAeq8h) time, and the number of impulses >115 dB peak that occurred during each measurement activity, were calculated from the AD data. Two parametric studies were used to estimate the effect of 1) impulses in the original data set, and 2) hypothetical impulses of different levels, durations and quantities on LAeq16h.
View Article and Find Full Text PDFJ Womens Health (Larchmt)
November 2014
Sex and gender differences have long been a research topic of interest, yet few studies have explored the specific differences in neurological responses between men and women during and after spaceflight. Knowledge in this field is limited due to the significant disproportion of sexes enrolled in the astronaut corps. Research indicates that general neurological and sensory differences exist between the sexes, such as those in laterality of amygdala activity, sensitivity and discrimination in vision processing, and neuronal cell death (apoptosis) pathways.
View Article and Find Full Text PDF