Publications by authors named "Richard W Compans"

Neuraminidase (NA) is the second most abundant glycoprotein on the surface of influenza A viruses (IAV). Neuraminidase type 1 (NA1) based virus-like particles (VLPs) have previously been shown to protect against challenge with H1N1 and H3N2 IAV. In this study, we produced neuraminidase type 2 (NA2) VLPs derived from the sequence of the seasonal IAV A/Perth/16/2009.

View Article and Find Full Text PDF

Intranasal (i.n.) immunization is a promising vaccination route for infectious respiratory diseases such as influenza.

View Article and Find Full Text PDF

Current strategies for improving protective response to influenza vaccines during immunosenescence do not adequately protect individuals over 65 years of age. Here, we used an aged mouse model to investigate the potential of co-delivery of influenza vaccine with the recently identified combination of a saponin adjuvant Quil-A and an activator of the STING pathway, 2'3 cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) dissolving microneedle patches (MNPs) applied to skin. We demonstrate that synergy between the two adjuvant components is observed after their incorporation with H1N1 vaccine into MNPs as revealed by analysis of the immune responses in adult mice.

View Article and Find Full Text PDF

Skin vaccination by microneedle (MN) patch simplifies the immunization process to increase access to vaccines for global health. Lyophilization has been widely used to stabilize vaccines and other biologics during storage, but is generally not compatible with the MN patch manufacturing processes. In this study, our goal was to develop a method to incorporate lyophilized inactivated H1N1 influenza vaccine into MN patches during manufacturing by suspending freeze-dried vaccine in anhydrous organic solvent during the casting process.

View Article and Find Full Text PDF

Zika virus (ZIKV) causes moderate to severe neuro-ocular sequelae, with symptoms ranging from conjunctivitis to Guillain-Barré Syndrome (GBS). Despite the international threat ZIKV poses, no licensed vaccine exists. As ZIKV and DENV are closely related, antibodies against one virus have demonstrated the ability to enhance the other.

View Article and Find Full Text PDF
Article Synopsis
  • EBOV infection causes severe hemorrhagic fevers in humans with a mortality rate of 30-80%, highlighting the urgent need for effective vaccines.
  • In a study, two immunization methods (intramuscular and intradermal) using EBOV virus-like particles (VLPs) were tested in guinea pigs, showing similar antibody levels but differing types and binding sites of the induced antibodies.
  • Both immunization routes led to high levels of neutralizing antibodies and 100% survival against a lethal EBOV challenge in vaccinated guinea pigs, suggesting intradermal immunization could be a more effective vaccination strategy.
View Article and Find Full Text PDF

There is an urgent need to improve protective responses to influenza vaccination in the elderly population, which is at especially high risk for adverse outcomes from influenza infection. Currently available inactivated vaccines provide limited protection, even when a 4-fold higher dose of the vaccine is administered. Adjuvants are often added to vaccines to boost protective efficacy.

View Article and Find Full Text PDF

Vaccines prevent 2-3 million childhood deaths annually; however, low vaccine efficacy and the resulting need for booster doses create gaps in immunization coverage. In this translational study, we explore the benefits of extended release of licensed vaccine antigens into skin to increase immune responses after a single dose in order to design improved vaccine delivery systems. By administering daily intradermal injections of inactivated polio vaccine according to six different delivery profiles, zeroth-order release over 28 days resulted in neutralizing antibody titers equivalent to two bolus vaccinations administered one month apart.

View Article and Find Full Text PDF

It is a high priority to develop a simple and effective delivery method for a cross-protective influenza vaccine. We investigated skin immunization by microneedle (MN) patch with human influenza split vaccine and virus-like particles containing heterologous M2 extracellular (M2e) domains (M2e5x virus-like particles (VLP)) as a cross-protective influenza vaccine candidate. Co-delivery of influenza split vaccine and M2e5x VLP to the skin by MN patch was found to confer effective protection against heterosubtypic influenza virus by preventing weight loss and reducing lung viral loads.

View Article and Find Full Text PDF

Influenza is a persistent threat to public health. Here we report that double-layered peptide nanoparticles induced robust specific immunity and protected mice against heterosubtypic influenza A virus challenges. We fabricated the nanoparticles by desolvating a composite peptide of tandem copies of nucleoprotein epitopes into nanoparticles as cores and cross-linking another composite peptide of four tandem copies of influenza matrix protein 2 ectodomain epitopes to the core surfaces as a coating.

View Article and Find Full Text PDF

Development of a safe and efficacious filovirus vaccine is of high importance to public health. In this study, we compared immune responses induced by Ebola virus (EBOV) glycoprotein (GP) subunit vaccines via intradermal immunization with microneedle (MN) patches and the conventional intramuscular (IM) injection in mice, which showed that MN delivery of GP induced higher levels and longer lasting antibody responses against GP than IM injection. Further, we found that EBOV GP in formulation with a saponin-based adjuvant, Matrix-M, can be efficiently loaded onto MN patches.

View Article and Find Full Text PDF

In this study, we investigated immune responses induced by purified Ebola virus (EBOV) soluble glycoprotein (sGP) subunit vaccines via intradermal immunization with microneedle (MN) patches in comparison with intramuscular (IM) injection in mice. Our results showed that MN delivery of EBOV sGP was superior to IM injection in eliciting higher levels and longer lasting antibody responses against EBOV sGP and GP antigens. Moreover, sGP-specific immune responses induced by MN or IM immunizations were effectively augmented by formulating sGP with a saponin-based adjuvant, and they were shown to confer complete protection of mice against lethal mouse-adapted EBOV (MA-EBOV) challenge.

View Article and Find Full Text PDF

Neuraminidase is one of the two surface glycoproteins of influenza A and B viruses. It has enzymatic activity that cleaves terminal sialic acid from glycans, and that activity is essential at several points in the virus life cycle. While neuraminidase is a major target for influenza antivirals, it is largely ignored in vaccine development.

View Article and Find Full Text PDF

The widely used influenza subunit vaccine would benefit from increased protection rates in vulnerable populations. Skin immunization by microneedle (MN) patch can increase vaccine immunogenicity, as well as increase vaccination coverage due to simplified administration. To further increase immunogenicity, we used granulocyte-macrophage colony stimulating factor (GM-CSF), an immunomodulatory cytokine already approved for skin cancer therapy and cancer support treatment.

View Article and Find Full Text PDF

Current influenza vaccines provide limited protection against circulating influenza A viruses. A universal influenza vaccine will eliminate the intrinsic limitations of the seasonal flu vaccines. Here we report methodology to generate double-layered protein nanoparticles as a universal influenza vaccine.

View Article and Find Full Text PDF

Recent studies indicated that in elderly individuals, statin therapy is associated with a reduced response to influenza vaccination. The present study was designed to determine effects on the immune response to influenza vaccination induced by statin administration in a mouse model, and investigate potential approaches to improve the outcome of vaccination on the background of statin therapy. We fed middle aged BALB/c mice a high fat "western" diet (WD) alone or supplemented with atorvastatin (AT) for 14 weeks, and control mice were fed with the regular rodent diet.

View Article and Find Full Text PDF

Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA) vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1). To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP), and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env).

View Article and Find Full Text PDF

Increased susceptibility to influenza virus infection during pregnancy has been attributed to immunological changes occurring before and during gestation in order to "tolerate" the developing fetus. These systemic changes are most often characterized by a suppression of cell-mediated immunity and elevation of humoral immune responses referred to as the Th1-Th2 shift. However, the underlying mechanisms which increase pregnant mothers' risk following influenza virus infection have not been fully elucidated.

View Article and Find Full Text PDF

Influenza virus causes life-threatening infections in pregnant women and their newborns. Immunization during pregnancy is the most effective means of preventing maternal and infant mortality/morbidity; however, influenza vaccination rates of pregnant women remain under 50%. Furthermore, the availability of vaccines in low-resource populations is limited.

View Article and Find Full Text PDF

Background: Microneedle patches provide an alternative to conventional needle-and-syringe immunisation, and potentially offer improved immunogenicity, simplicity, cost-effectiveness, acceptability, and safety. We describe safety, immunogenicity, and acceptability of the first-in-man study on single, dissolvable microneedle patch vaccination against influenza.

Methods: The TIV-MNP 2015 study was a randomised, partly blinded, placebo-controlled, phase 1, clinical trial at Emory University that enrolled non-pregnant, immunocompetent adults from Atlanta, GA, USA, who were aged 18-49 years, naive to the 2014-15 influenza vaccine, and did not have any significant dermatological disorders.

View Article and Find Full Text PDF

Ebola DNA vaccine is incorporated into PLGA-PLL/γPGA nanoparticles and administered to skin using a microneedle (MN) patch. The nanoparticle delivery system increases vaccine thermostability and immunogenicity compared to free vaccine. Vaccination by MN patch produces stronger immune responses than intramuscular administration.

View Article and Find Full Text PDF

Influenza virus is a significant cause of morbidity and mortality, with worldwide seasonal epidemics. The duration and quality of humoral immunity and generation of immunological memory to vaccines is critical for protective immunity. In the current study, we examined the long-lasting protective efficacy of chimeric VLPs (cVLPs) containing influenza HA and GPI-anchored CCL28 as antigen and mucosal adjuvant, respectively, when immunized intranasally in mice.

View Article and Find Full Text PDF

Recurring influenza viruses pose an annual threat to public health. A time-saving, cost-effective and egg-independent influenza vaccine approach is important particularly when responding to an emerging pandemic. We fabricated coated, two-layer protein nanoclusters from recombinant trimeric hemagglutinin from an avian-origin H7N9 influenza A virus as an approach for vaccine development in response to an emerging pandemic.

View Article and Find Full Text PDF