Background: Esophageal cancer is a deadly cancer with 5-year survival <20%. Although multiple risk factors for esophageal adenocarcinoma (EAC) including obesity, GERD and smoking have been identified, these risk factors do not fully explain the rising incidence of EAC. In this study, we evaluated the association between prior history of tonsillectomy and EAC.
View Article and Find Full Text PDFMicroRNAs (miRNAs) play an important role in the regulation of biological processes and have demonstrated great potential as biomarkers for the early detection of various diseases, including esophageal adenocarcinoma (EAC) and Barrett's esophagus (BE), the premalignant metaplasia associated with EAC. Herein, we demonstrate the direct detection of the esophageal cancer biomarker, miR-21, in RNA extracted from 17 endoscopic tissue biopsies using the nanophotonics technology our group has developed, termed the inverse molecular sentinel (iMS) nanobiosensor, with surface-enhanced Raman scattering (SERS) detection. The potential of this label-free, homogeneous biosensor for cancer diagnosis without the need for target amplification was demonstrated by discriminating esophageal cancer and Barrett's esophagus from normal tissue with notable diagnostic accuracy.
View Article and Find Full Text PDFField cancerization is a premalignant process marked by clones of oncogenic mutations spreading through the epithelium. The timescales of intestinal field cancerization can be variable and the mechanisms driving the rapid spread of oncogenic clones are unknown. Here we use a Cancer rainbow (Crainbow) modelling system for fluorescently barcoding somatic mutations and directly visualizing the clonal expansion and spread of oncogenes.
View Article and Find Full Text PDFPaneth cells (PCs) are epithelial cells found in the small intestine, next to intestinal stem cells (ISCs) at the base of the crypts. PCs secrete antimicrobial peptides (AMPs) that regulate the commensal gut microbiota. In contrast, little is known regarding how the enteric microbiota reciprocally influences PC function.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
November 2017
Background & Aims: Although cells comprising esophageal submucosal glands (ESMGs) represent a potential progenitor cell niche, new models are needed to understand their capacity to proliferate and differentiate. By histologic appearance, ESMGs have been associated with both overlying normal squamous epithelium and columnar epithelium. Our aim was to assess ESMG proliferation and differentiation in a 3-dimensional culture model.
View Article and Find Full Text PDFSeveral cell populations have been reported to possess intestinal stem cell (ISC) activity during homeostasis and injury-induced regeneration. Here, we explored inter-relationships between putative mouse ISC populations by comparative RNA-sequencing (RNA-seq). The transcriptomes of multiple cycling ISC populations closely resembled Lgr5 ISCs, the most well-defined ISC pool, but Bmi1-GFP cells were distinct and enriched for enteroendocrine (EE) markers, including Prox1.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
September 2017
Esophageal injury is a risk factor for diseases such as Barrett's esophagus (BE) and esophageal adenocarcinoma. To improve understanding of signaling pathways associated with both normal and abnormal repair, animal models are needed. Traditional rodent models of esophageal repair are limited by the absence of esophageal submucosal glands (ESMGs), which are present in the human esophagus.
View Article and Find Full Text PDFThe canonical Wnt/β-catenin signalling pathway governs diverse developmental, homeostatic and pathological processes. Palmitoylated Wnt ligands engage cell-surface frizzled (FZD) receptors and LRP5 and LRP6 co-receptors, enabling β-catenin nuclear translocation and TCF/LEF-dependent gene transactivation. Mutations in Wnt downstream signalling components have revealed diverse functions thought to be carried out by Wnt ligands themselves.
View Article and Find Full Text PDFThis overview gives a brief historical summary of key discoveries regarding stem cells of the small intestine. The current concept is that there are two pools of intestinal stem cells (ISCs): an actively cycling pool that is marked by Lgr5, is relatively homogeneous and is responsible for daily turnover of the epithelium; and a slowly cycling or quiescent pool that functions as reserve ISCs. The latter pool appears to be quite heterogeneous and may include partially differentiated epithelial lineages that can reacquire stem cell characteristics following injury to the intestine.
View Article and Find Full Text PDFBackground & Aims: The intestinal epithelium is the first line of defense against enteric pathogens. We investigated the response of small intestinal and colonic crypt cultures to a panel of toll-like receptor ligands to assess the impact of microbial pattern recognition on epithelial growth.
Methods: Primary murine jejunal enteroids and colonoids were cultured with lipopeptide Pam3CSK4, lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (Poly I:C) for 4 to 6 days.
The goals of this study were to document the proliferative response of intestinal stem cells (ISCs) during regeneration after damage from doxorubicin (DXR), and to characterize the signals responsible for ISC activation. To this end, jejuni from DXR-treated mice were harvested for histology, assessment of ISC numbers and proliferation by flow cytometry, crypt culture, and RNA analyses. Histology showed that crypt depth and width were increased 4 days after DXR.
View Article and Find Full Text PDFWe report here that side population (SP) sorting allows for the simultaneous isolation of two intestinal stem cell (ISC) subsets from wild-type (WT) mice which are phenotypically different and represent cycling and non-cycling pools of cells. Following 5-ethynyl-2'-deoxyuridine (EdU) injection, in the upper side population (USP) the percentage of EdU+ was 36% showing this fraction to be highly proliferative. In the lower side population (LSP), only 0.
View Article and Find Full Text PDFIntestinal stem cells (ISCs) are responsible for renewal of the epithelium both during normal homeostasis and following injury. As such, they have significant therapeutic potential. However, whether ISCs can survive tissue storage is unknown.
View Article and Find Full Text PDFObjective: Although polymorphisms of the NOD2 gene predispose to the development of ileal Crohn's disease, the precise mechanisms of this increased susceptibility remain unclear. Previous work has shown that transcript expression of the Paneth cell (PC) antimicrobial peptides (AMPs) α-defensin 4 and α-defensin-related sequence 10 are selectively decreased in Nod2(-/-) mice. However, the specific mouse background used in this previous study is unclear.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
August 2012
A growing body of evidence has implicated CD24, a cell-surface protein, as a marker of colorectal cancer stem cells and target for antitumor therapy, although its presence in normal colonic epithelium has not been fully characterized. Previously, our group showed that CD24-based cell sorting can be used to isolate a fraction of murine small intestinal epithelial cells enriched in actively cycling stem cells. Similarly, we hypothesized that CD24-based isolation of colonic epithelial cells would generate a fraction enriched in actively cycling colonic epithelial stem cells (CESCs).
View Article and Find Full Text PDFBackground: Increasing evidence supports the central role of Paneth cells in maintaining intestinal host-microbial homeostasis. However, the direct impact of host genotype on Paneth cell function remains unclear. Here, we characterize key differences in Paneth cell function and intestinal microbial composition in two widely utilized, genetically distinct mouse strains (C57BL/6 and 129/SvEv).
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
March 2011
Intestinal stem cells (ISCs) have been studied for more than three decades; however, their isolation has remained a challenge. We hypothesized that, just as for stem cells of other tissues, one or more membrane markers would allow positive selection of ISCs by antibody-based sorting. To explore this hypothesis, microarray data of putative ISC fractions generated by side population sorting and laser capture microdissection were subjected to bioinformatic analysis to identify common membrane antigens.
View Article and Find Full Text PDFPhytosterols, components of soy-derived lipids, are among the proposed exacerbants of parenteral nutrition-associated cholestasis (PNAC). We investigated whether phytosterols contribute to bile acid (BA)-induced hepatocyte damage by antagonizing a nuclear receptor (NR) critically involved in hepatoprotection from cholestasis, FXR (farnesoid X receptor, NR1H4). In HepG2 cells, stigmasterol acetate (StigAc), a water-soluble Stig derivative, suppressed ligand-activated expression of FXR target genes involved in adaptation to cholestasis (i.
View Article and Find Full Text PDFBackground/aims: A recently determined target of lipopolysaccharide (LPS) and cytokine signaling in liver is the central Type II nuclear receptor (NR) heterodimer partner, retinoid X receptor alpha (RXRalpha). We sought to determine if Rosiglitazone (Rosi), a peroxisome proliferator activated receptor gamma (PPARgamma) agonist with anti-inflammatory properties, can attenuate LPS and cytokine-induced molecular suppression of RXRalpha-regulated genes.
Methods: In vivo, mice were gavage-fed Rosi for 3 days, prior to intraperitoneal injection of LPS, followed by harvest of liver and serum.