Objective: The aim of this study was to evaluate the effects of different opacifiers on the translucency of experimental dental composite-resins.
Methods: Three metal oxides that are used as opacifiers were tested in this study: titanium oxide (TiO), aluminium oxide (AlO) and zirconium oxide (ZrO). Experimental composite-resins were fabricated containing 25wt.
This guidance document describes the specific issues involved in dental multilayer ceramic systems. The material interactions with regard to specific thermal and mechanical properties are reviewed and the characteristics of dental tooth-shaped processing parameters (sintering, geometry, thickness ratio, etc.) are discussed.
View Article and Find Full Text PDFObjectives: To provide background information and guidance as to how to use fractography accurately, a powerful tool for failure analysis of dental ceramic structures.
Methods: An extended palette of qualitative and quantitative fractography is provided, both for in vivo and in vitro fracture surface analyses. As visual support, this guidance document will provide micrographs of typical critical ceramic processing flaws, differentiating between pre- versus post sintering cracks, grinding damage related failures and occlusal contact wear origins and of failures due to surface degradation.
Objectives: The objective is within the scope of the Academy of Dental Materials Guidance Project, which is to provide dental materials researchers with a critical analysis of fracture toughness (FT) tests such that the assessment of the FT of dental ceramics is conducted in a reliable, repeatable and reproducible way.
Methods: Fracture mechanics theory and FT methodologies were critically reviewed to introduce basic fracture principles and determine the main advantages and disadvantages of existing FT methods from the standpoint of the dental researcher.
Results: The recommended methods for FT determination of dental ceramics were the Single Edge "V" Notch Beam (SEVNB), Single Edge Precracked Beam (SEPB), Chevron Notch Beam (CNB), and Surface Crack in Flexure (SCF).
Statement Of The Problem: The usage of glass ionomer cements (GICs) restorative materials are very limited due to lack of flexural strength and toughness.
Purpose: The aim of this study was to investigate the effect of using a leucite glass on a range of mechanical and optical properties of commercially available conventional glass ionomer cement.
Materials And Method: Ball milled 45μm leucite glass particles were incorporated into commercial conventional GIC, Ketac-Molar Easymix (KMEm).
Objectives: This study investigates the role of acetone, as a carrier for nano-hydroxyapatite (nano-HA) in solution, to enhance the infiltration of fully demineralized dentin with HA nanoparticles (NPs).
Methods: Dentin specimens were fully demineralized and subsequently infiltrated with two types of water-based nano-HA solutions (one containing acetone and one without). Characterization of the dentin surfaces and nano-HA particles was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).
Objective: The purpose of this study was to investigate a range of variables affecting the synthesis of a miserite glass-ceramic (GC).
Methods: Miserite glass was synthesized by the melt quench technique. The crystallization kinetics of the glass were determined using Differential Thermal Analysis (DTA).
Objectives: To produce a new veneering ceramic based on the production of a multiple phase glass-ceramic with improved performance in terms of strength and toughness.
Methods: A composition of 60% leucite, 20% diopside and 20% feldspathic glass was prepared, blended and a heat treatment schedule of 930°C for 5 min was derived from differential thermal analysis (DTA) of the glasses. X-ray diffraction (XRD) and SEM analysis determined the crystalline phases and microstructure.
Introduction: The purpose of this study was to examine the effect of different extraction media, including culture media, as well as storage times on the elution of monomers from modern dental composites.
Materials And Methods: FOUR CONTEMPORARY COMPOSITE MATERIALS WERE TESTED: (a) Clearfil Majesty Esthetic (Kuraray), (b) Esthet X (DENTSPLY), (c) Filtek Silorane (3M ESPE), and (d) Admira (Voco). Forty-eight specimens were made.
Objective: This study investigates the potential of a novel guided tissue regeneration strategy, using fully demineralized dentin infiltrated with silica and hydroxyapatite (HA) nanoparticles (NPs), to remineralize dentin collagen that is completely devoid of native hydroxyapatite.
Methods: Dentin blocks were fully demineralized with 4N formic acid and subsequently infiltrated with silica and HA NPs. The remineralizing potential of infiltrated dentin was assessed following a twelve week exposure to an artificial saliva solution by means of TEM, EDS and micro-CT.
Objectives: To determine, by means of static fracture testing the effect of the tooth preparation design and the elastic modulus of the cement on the structural integrity of the cemented machined ceramic crown-tooth complex.
Methods: Human maxillary extracted premolar teeth were prepared for all-ceramic crowns using two preparation designs; a standard preparation in accordance with established protocols and a novel design with a flat occlusal design. All-ceramic feldspathic (Vita MK II) crowns were milled for all the preparations using a CAD/CAM system (CEREC-3).
The effect of preparation design and the physical properties of the interface lute on the restored machined ceramic crown-tooth complex are poorly understood. The aim of this work was to determine, by means of three-dimensional finite element analysis (3D FEA) the effect of the tooth preparation design and the elastic modulus of the cement on the stress state of the cemented machined ceramic crown-tooth complex. The three-dimensional structure of human premolar teeth, restored with adhesively cemented machined ceramic crowns, was digitized with a micro-CT scanner.
View Article and Find Full Text PDFObjectives: The objectives of this study were to develop a color reproduction system in advanced manufacture technology for accurate and automatic processing of soft tissue prostheses.
Methods: The manufacturing protocol was defined to effectively and consistently produce soft tissue prostheses using a 3D printing system. Within this protocol printer color profiles were developed using a number of mathematical models for the proposed 3D color printing system based on 240 training colors.
Objective: The aim of this study was to investigate the manufacture and characterisation of different compositions of fluorcanasite glass-ceramics with reduced fluorine content and to assess their mechanical and physical properties.
Methods: Three compositional variations (S80, S81 and S82) of a fluorcanasite glass were investigated. Differential thermal analysis (DTA) and X-ray diffraction (XRD) identified crystallisation temperatures and phases.
For dental implants, it is vital that an initial soft tissue seal is achieved as this helps to stabilize and preserve the peri-implant tissues during the restorative stages following placement. The study of the implant-soft tissue interface is usually undertaken in animal models. We have developed an in vitro three-dimensional tissue-engineered oral mucosal model (3D OMM), which lends itself to the study of the implant-soft tissue interface as it has been shown that cells from the three-dimensional OMM attach onto titanium (Ti) surfaces forming a biological seal (BS).
View Article and Find Full Text PDFPotassium fluorrichterite (KNaCaMg(5)Si(8)O(22)F(2)) glass-ceramics were modified by either increasing the concentration of calcium (GC5) or by the addition of P(2)O(5) (GP2). Rods (2 × 4 mm) of stoichiometric fluorrichterite (GST), modified compositions (GC5 and GP2) and 45S5 bioglass, which was used as the reference material, were prepared using a conventional lost-wax technique. Osteoconductivity was investigated by implantation into healing defects in the midshaft of rabbit femora.
View Article and Find Full Text PDFObjectives: The management of demineralized dentin resulting from dental caries or acid erosion remains an oral healthcare clinical challenge. This paper investigates, through a range of studies, the ability of colloidal silica and hydroxyapatite (HA) nanoparticles to infiltrate the collagen structure of demineralized dentin.
Methods: Dentin samples were completely demineralized in 4 N formic acid.
The aim of the present study was to compare the translucency of different shades of two highly aesthetic multilayered restorative composite resins. In total nine shades from Esthet.X and ten shades from Filtek Supreme composite resins were chosen.
View Article and Find Full Text PDFPurpose: To evaluate both the immediate and water-stored repair tensile bond strength (TBS) of a nanohybrid resin composite using different bonding protocols.
Materials And Methods: One hundred sixty half hourglass-shaped slabs were prepared. Eighty half-slabs were wet ground immediately after light curing using high-speed abrasive burs, while the other half-slabs were stored in water for one month (delayed) and then wet ground for repair.
Objectives: To evaluate the effect of HF acid etching and silane treatment on the interfacial fracture toughness of a self-adhesive and two conventional resin-based cements bonded to a lithium disilicate glass ceramic.
Methods: Lithium disilicate glass ceramic discs were prepared with two different surface preparations consisting of gritblasted with aluminium oxide, and gritblasted and etched with hydrofluoric acid. Ceramic surfaces with a chevron shaped circular hole were treated by an optimized silane treatment followed by an unfilled resin and then three different resin cements (Variolink II, Panavia F2, and Multilink Sprint).
Objectives: Major changes are taking place in dental laboratories as a result of new digital technologies. Our aim is to provide an overview of these changes. In this article the reader will be introduced to the range of layered fabrication technologies and suggestions are made how these might be used in dentistry.
View Article and Find Full Text PDFA three dimensional tissue-engineered human oral mucosal model (3D OMM) used in the investigation of implant-soft tissue interface was recently reported. The aim of this study was to examine the ultrastructural features of soft tissue attachment to various titanium (Ti) implant surfaces based on the 3D OMM. Two techniques, that is, focus ion beam (FIB) and electropolishing techniques were used to prepare specimens for transmission electron microscopic (TEM) analysis of the interface.
View Article and Find Full Text PDFPurpose: This in vitro study was designed to evaluate and compare the marginal gap, internal fit, and fracture load of resin-bonded, leucite-reinforced glass ceramic mesio-occlusal-distal (MOD) inlays fabricated by computer-aided design/manufacturing (CAD/CAM) or hot pressing.
Materials And Methods: Fifty caries-free extracted human molars were prepared for standardized MOD inlays. Impressions of each specimen were made and poured using type IV dental stone.
Potassium fluorrichterite (KNaCaMg(5)Si(8)O(22)F(2)) glass-ceramics were modified by either increasing the concentration of calcium in the glass (GC5), or by the addition of P(2)O(5) to produce potassium fluorrichterite-fluorapatite (GP2). The solubility of the stoichiometric composition (GST), GC5 and GP2 were measured using the standard test described in ISO 6872:1995 (Dental Ceramics). Ion release profiles were determined for Si, Ca, Mg, Na, K and P using inductively coupled plasma mass spectrometry and fluoride ion (F(-)) concentration was measured using an ion-selective electrode.
View Article and Find Full Text PDF