A potential path for enabling greater creativity and collaboration is through increased arts and science, technology, engineering, and mathematics (STEM) integration in education and research. This approach has been a growing discussion in US national forums and is the foundation of the science, technology, engineering, and mathematics plus arts and design (STEAM) education movement. Developing authentic artistic integrations with STEM fields (or vice versa) is challenging, particularly in higher education, where traditional disciplinary structures and incentives can impede the creation of integrated programs.
View Article and Find Full Text PDFHigher ordered structures of nanofibers, including nanofiber-based yarns and cables, have a variety of potential applications, including wearable health monitoring systems, artificial tendons, and medical sutures. In this study, twisted assemblies of polyacrylonitrile (PAN), polyvinylidene fluoride trifluoroethylene (PVDF-TrFE), and polycaprolactone (PCL) nanofibers were fabricated via a modified electrospinning setup, consisting of a rotating cone-shaped copper collector, two syringe pumps, and two high voltage power supplies. The fiber diameters and twist angles varied as a function of the rotary speed of the collector.
View Article and Find Full Text PDF