Publications by authors named "Richard U Margolis"

A subpopulation of nociceptors, the glial cell line-derived neurotrophic factor (GDNF)-dependent, non-peptidergic C-fibers, expresses a cell-surface glycoconjugate that can be selectively labeled with isolectin B4 (IB4 ), a homotetrameric plant lectin from Griffonia simplicifolia. We show that versican is an IB4 -binding molecule in rat dorsal root ganglion neurons. Using reverse transcriptase polymerase chain reaction (RT-PCR), in situ hybridization and immunofluorescence experiments on rat lumbar dorsal root ganglion, we provide the first demonstration that versican is produced by neurons.

View Article and Find Full Text PDF

The heparan sulfate proteoglycan glypican-1, the chondroitin sulfate proteoglycan phosphacan/RPTP (receptor protein-tyrosine phosphatase)-zeta/beta and the extracellular matrix protein tenascin-C were all found to be expressed by neural stem cells and by neural cells derived from them. Expression of proteoglycans and tenascin-C increased after retinoic acid induction of SSEA1-positive ES (embryonic stem) cells to nestin-positive neural stem cells, and after neural differentiation, proteoglycans and tenascin-C are expressed by both neurons and astrocytes, where they surround cell bodies and processes and in certain cases show distinctive expression patterns. With the exception of tenascin-C (whose expression may decrease somewhat), expression levels do not change noticeably during the following 2 weeks in culture.

View Article and Find Full Text PDF

Scar formation in the nervous system begins within hours after traumatic injury and is characterized primarily by reactive astrocytes depositing proteoglycans that inhibit regeneration. A fundamental question in CNS repair has been the identity of the initial molecular mediator that triggers glial scar formation. Here we show that the blood protein fibrinogen, which leaks into the CNS immediately after blood-brain barrier (BBB) disruption or vascular damage, serves as an early signal for the induction of glial scar formation via the TGF-beta/Smad signaling pathway.

View Article and Find Full Text PDF

We have examined the expression and localization patterns of hyaluronan and hyaluronan-binding chondroitin sulfate proteoglycans in neural stem cells and differentiated neural cells derived from mouse embryonic stem cells. Expression of proteoglycans and hyaluronan was weak in the SSEA1-positive embryonic stem cells but increased noticeably after retinoic acid induction to nestin-positive neural stem cells. After subsequent plating, the hyaluronan-binding chondroitin sulfate proteoglycans aggrecan, neurocan, and versican are expressed by cells in both the astrocytic and neuronal lineages.

View Article and Find Full Text PDF

1. The heparan sulphate proteoglycan glypican-1 is a major high-affinity ligand of the Slit proteins. 2.

View Article and Find Full Text PDF

Mammalian O-mannosylation, although an uncommon type of protein modification, is essential for normal brain and muscle development. Defective O-mannosylation causes congenital muscular dystrophy with abnormal neuronal migration [Walker-Warburg syndrome (WWS)]. Here, we have identified and cloned rat Pomt1 and Pomt2, which are homologues of human POMT1 and POMT2, with identities of 86 and 90%, respectively, at the amino acid level.

View Article and Find Full Text PDF

We have used a monoclonal antibody to neurocan and specific polyclonal antibodies to the non-homologous glycosaminoglycan attachment regions of aggrecan and mRNA splice variants of versican to compare the localization and developmental changes of these structurally related hyaluronan-binding chondroitin sulfate proteoglycans in the rat retina and optic nerve. Staining for aggrecan and versican was first seen at embryonic day 16 in the optic nerve and retina, whereas neurocan was not detected in the embryonic eye. At postnatal day 0 (P0), beta-versican staining is largely confined to the inner plexiform layer whereas alpha-versican is also apparent in the neuroblastic layer.

View Article and Find Full Text PDF

We have previously demonstrated that the Slit proteins, which are involved in axonal guidance and related processes, are high-affinity ligands of the heparan sulfate proteoglycan glypican-1. Glypican-Slit protein interactions have now been characterized in greater detail using two approaches. The ability of heparin oligosaccharides of defined structure (ranging in size from disaccharide to tetradeccasaccharide) to inhibit binding of a glypican-Fc fusion protein to recombinant human Slit-2 was determined using an ELISA.

View Article and Find Full Text PDF

Defects in O-mannosylation of alpha-dystroglycan are thought to cause certain types of congenital muscular dystrophies with neuronal migration disorders. Among these muscular dystrophies, Walker-Warburg syndrome is caused by mutations in the gene encoding putative protein O-mannosyltransferase 1 (POMT1), which is homologous to yeast protein O-mannosyltransferases. However, there is no evidence that POMT1 has enzymatic activity.

View Article and Find Full Text PDF

Chondroitin sulfate proteoglycans (CSPGs) are extracellular matrix (ECM) molecules that are widely expressed throughout the developing and adult CNS. In vitro studies demonstrate their potential to restrict neurite outgrowth, and it is believed that CSPGs also inhibit axonal regeneration after CNS injury in vivo. Previous studies demonstrated that CSPGs are generally upregulated after spinal cord injury, and more recent reports have begun to identify individual proteoglycans that may play dominant roles in limiting axonal regeneration.

View Article and Find Full Text PDF

The localization of aggrecan and mRNA splice variants of versican in the developing rat central nervous system has been examined by using specific polyclonal antibodies to the nonhomologous glycosaminoglycan attachment regions of these hyaluronan-binding chondroitin sulfate proteoglycans. At embryonic day 16 (E16), aggrecan and versican splice variants containing either or both the alpha-and beta-domains are present in the marginal zone and subplate of the cerebral cortex and in the amygdala, internal capsule, and the optic and lateral olfactory tracts. There is strong staining of versican but not of aggrecan in the hippocampus and dentate gyrus by E19, whereas both aggrecan and alpha-versican are present in the fimbria.

View Article and Find Full Text PDF

Human Cripto-1 (CR-1) is a member of the epidermal growth factor-Cripto FRL1 Cryptic family that has been shown to function as a coreceptor with the type I Activin serine-threonine kinase receptor ALK4 for the transforming growth factor beta-related peptide Nodal. However, CR-1 can also activate the mitogen-activated protein kinase and Akt pathways independently of Nodal and ALK4 by an unknown mechanism. Here, we demonstrate that CR-1 specifically binds to Glypican-1, a membrane-associated heparan sulfate proteoglycan, and activates the tyrosine kinase c-Src, triggering the mitogen-activated protein kinase and Akt signaling pathways.

View Article and Find Full Text PDF