In the search for synthetic mimics of protein secondary structures relevant to the mediation of protein-protein interactions, we have synthesized a series of tetrasubstituted diphenylacetylenes that display β-sheet structures in two directions. Extensive X-ray crystallographic and NMR solution phase studies are consistent with these proteomimetics adopting sheet structures, displaying both hydrophobic and hydrophilic amino acid side chains.
View Article and Find Full Text PDFSynthetic molecules capable of the mimicry of α-helices that are elongated and/or contain hydrophilic side chains have been largely elusive. However, the oligophenylenaminone structure can surmount both of these challenges (see scheme).
View Article and Find Full Text PDFWe describe the design and synthesis of a non-peptidic β-strand mimetic composed of alternating aryl and imidazolidin-2-one rings that can be adapted to display diverse side-chains. Solid- and solution-phase data together with calculations suggest that the desired conformation for side-chain mimicry is readily accessible and well-populated.
View Article and Find Full Text PDFA family of planar disc-like hexa-, octa- and decametallic Ni(II) complexes exhibit dominant ferromagnetic exchange. The deca- and octametallic clusters [Ni(II) (10)(tmp)(2)(N(3))(8)(acac)(6)(MeOH)(6)] (1, H(3)tmp=1,1,1-tris(hydroxymethyl)propane; acac=acetylacetonate) and [Ni(II) (8)(thme)(2)(O(2)CPh)(4)(Cl)(6)(MeCN)(6)(H(2)O)(2)] (2, H(3)thme=1,1,1-tris(hydroxymethyl)ethane) represent rare examples of Ni(II)-based single-molecule magnets, and [Ni(II) (10)] (1) possesses the largest barrier to magnetisation reversal of any Ni(II) single-molecule magnet to date.
View Article and Find Full Text PDF[Mn(IV)Mn(II)3] triangular units directed by the presence of tripodal alcohols self-assemble in the presence of azide and acetate ligands to form either a [Mn24] "wheel" or a [Mn32] "cube".
View Article and Find Full Text PDFFerromagnetic exchange between the three Mn ions in the complex [Mn3(Hcht)2(bpy)4](ClO4)3 leads to a spin ground state of S = 7; single crystal studies reveal the temperature and sweep rate dependent hysteresis loops expected for a single-molecule magnet.
View Article and Find Full Text PDF