Publications by authors named "Richard T McNider"

The highest correlative relations for air pollution levels are often with meteorological variables such as temperature and wind speed. Today, sophisticated gridded high-resolution meteorological models are used to produce meteorological fields that drive chemical transport models for air quality management. Errors in specification of the physical atmosphere such as temperature, clouds and winds can affect the air quality predictions.

View Article and Find Full Text PDF

Recently, a comprehensive air quality modeling system was developed as part of the Southern Appalachians Mountains Initiative (SAMI) with the ability to simulate meteorology, emissions, ozone, size- and composition-resolved particulate matter, and pollutant deposition fluxes. As part of SAMI, the RAMS/EMS-95/URM-1ATM modeling system was used to evaluate potential emission control strategies to reduce atmospheric pollutant levels at Class I areas located in the Southern Appalachians Mountains. This article discusses the details of the ozone model performance and the methodology that was used to scale discrete episodic pollutant levels to seasonal and annual averages.

View Article and Find Full Text PDF