We have fabricated an open-cavity microcavity structure containing a thin film of the biologically-derived molecule β-carotene. We show that the β-carotene absorption can be described in terms of a series of Lorentzian functions that approximate the 0-0, 0-1, 0-2, 0-3 and 0-4 electronic and vibronic transitions. On placing this molecular material into a microcavity, we obtain anti-crossing between the cavity mode and the 0-1 vibronic transition, however other electronic and vibronic transitions remain in the intermediate or weak-coupling regime due to their lower oscillator strength and broader linewidth.
View Article and Find Full Text PDFStrong exciton-photon coupling is the result of a reversible exchange of energy between an excited state and a confined optical field. This results in the formation of polariton states that have energies different from the exciton and photon. We demonstrate strong exciton-photon coupling between light-harvesting complexes and a confined optical mode within a metallic optical microcavity.
View Article and Find Full Text PDF