Publications by authors named "Richard Suckling"

The CD8 co-receptor exists as both an αα homodimer, expressed on subsets of specialized lymphoid cells, and as an αβ heterodimer, which is the canonical co-receptor on cytotoxic T-cells, tuning TCR thymic selection and antigen-reactivity in the periphery. However, the biophysical parameters governing human CD8αβ interactions with classical MHC class I (MHCI) and unconventional MHC-like molecules have not been determined. Using hetero-dimerized Fc-fusions to generate soluble human CD8αβ, we demonstrate similar weak binding affinity to multiple different MHCI alleles compared with CD8αα.

View Article and Find Full Text PDF

The non-polymorphic HLA-E molecule offers opportunities for new universal immunotherapeutic approaches to chronic infectious diseases. Chronic Hepatitis B virus (HBV) infection is driven in part by T cell dysfunction due to elevated levels of the HBV envelope (Env) protein hepatitis B surface antigen (HBsAg). Here we report the characterization of three genotypic variants of an HLA-E-binding HBsAg peptide, Env identified through bioinformatic predictions and verified by biochemical and cellular assays.

View Article and Find Full Text PDF
Article Synopsis
  • The Notch receptor is activated by ligands from the Delta/Serrate/Lag-2 family, but the structure of its signaling complex is not fully understood.
  • This study focuses on the Notch-1 EGF 20-27 region, using advanced techniques like crystallography and NMR, revealing it has a rigid yet flexible structure influenced by calcium ions.
  • Findings indicate that variations in the Notch-1 protein affect its activation by ligands, highlighting the importance of calcium in maintaining structural integrity and the role of different interactions in Drosophila mutations.
View Article and Find Full Text PDF

Naturally occurring T cells that recognize microbial peptides via HLA-E, a nonpolymorphic HLA class Ib molecule, could provide the foundation for new universal immunotherapeutics. However, confidence in the biological relevance of putative ligands is crucial, given that the mechanisms by which pathogen-derived peptides can access the HLA-E presentation pathway are poorly understood. We systematically interrogated the HIV proteome using immunopeptidomic and bioinformatic approaches, coupled with biochemical and cellular assays.

View Article and Find Full Text PDF
Article Synopsis
  • MAIT cells utilize specific T cell receptors (TCR) to identify microbial riboflavin precursors with the help of the MR1 molecule, but their ability to interact with non-microbial antigens is not fully understood.
  • The study reveals that some MAIT TCRs can react to both tumor and healthy cells without needing microbial signals, indicating a rare presence of self-reactive MAIT cells in healthy donors that may function similarly to T-helper cells.
  • Findings show that MAIT TCRs have significant crossreactivity, implying that their role in the immune response could extend beyond just defending against microbes to also include maintaining immune balance and potentially influencing diseases.
View Article and Find Full Text PDF

Accurate Notch signalling is critical for development and homeostasis. Fine-tuning of Notch-ligand interactions has substantial impact on signalling outputs. Recent structural studies have identified a conserved N-terminal C2 domain in human Notch ligands which confers phospholipid binding in vitro.

View Article and Find Full Text PDF

Background And Aims: Therapies for chronic hepatitis B virus (HBV) infection are urgently needed because of viral integration, persistence of viral antigen expression, inadequate HBV-specific immune responses, and treatment regimens that require lifelong adherence to suppress the virus. Immune mobilizing monoclonal T Cell receptors against virus (ImmTAV) molecules represent a therapeutic strategy combining an affinity-enhanced T Cell receptor with an anti-CD3 T Cell-activating moiety. This bispecific fusion protein redirects T cells to specifically lyse infected cells expressing the target virus-derived peptides presented by human leukocyte antigen (HLA).

View Article and Find Full Text PDF

Pioneering cell aggregation experiments from the Artavanis-Tsakonas group in the late 1980's localized the core ligand recognition sequence in the Drosophila Notch receptor to epidermal growth factor-like (EGF) domains 11 and 12. Since then, advances in protein expression, structure determination methods and functional assays have enabled us to define the molecular basis of the core receptor/ligand interaction and given new insights into the architecture of the Notch complex at the cell surface. We now know that Notch EGF11 and 12 interact with the Delta/Serrate/LAG-2 (DSL) and C2 domains of ligand and that membrane-binding, together with additional protein-protein interactions outside the core recognition domains, are likely to fine-tune generation of the Notch signal.

View Article and Find Full Text PDF

Recent data have expanded our understanding of Notch signalling by identifying a C2 domain at the N-terminus of Notch ligands, which has both lipid- and receptor-binding properties. We present novel structures of human ligands Jagged2 and Delta-like4 and human Notch2, together with functional assays, which suggest that ligand-mediated coupling of membrane recognition and Notch binding is likely to be critical in establishing the optimal context for Notch signalling. Comparisons between the Jagged and Delta family show a huge diversity in the structures of the loops at the apex of the C2 domain implicated in membrane recognition and Jagged1 missense mutations, which affect these loops and are associated with extrahepatic biliary atresia, lead to a loss of membrane recognition, but do not alter Notch binding.

View Article and Find Full Text PDF

Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ'ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets.

View Article and Find Full Text PDF

On admission to hospital Caucasian 61 year old male with jaundice was found to have unexplained increased serum iron indices. He had bilateral peripheral arthritis. On further investigation he had grade II hepatocellular iron staining and a hepatic index of 5.

View Article and Find Full Text PDF

In Drosophila melanogaster, the loss of activator de2f1 leads to a severe reduction in cell proliferation and repression of E2F targets. To date, the only known way to rescue the proliferation block in de2f1 mutants was through the inactivation of dE2F2. This suggests that dE2F2 provides a major contribution to the de2f1 mutant phenotype.

View Article and Find Full Text PDF