Despite impressive improvements in the care of patients with ST-segment elevation myocardial infarction, mortality remains high. Reperfusion is necessary for myocardial salvage, but the abrupt return of flow sets off a cascade of injurious processes that can lead to further necrosis. This has been termed myocardial ischemia-reperfusion injury and is the subject of this review.
View Article and Find Full Text PDFNovel methods to construct small molecule-protein bioconjugates are integral to the development of new biomedicines for a variety of diseases. C-C linked bioconjugates are increasingly desirable in this application due to their stability and can be accessed through cross aldol bioconjugation of reactive α-oxo aldehyde handles easily introduced at the N-terminus of proteins by periodate oxidation. We previously developed an organocatalyst-mediated protein aldol ligation (OPAL) for chemical modification of these reactive aldehydes, but the efficiency of this method was limited when a proline residue was directly adjacent to the N-terminus due to intramolecular hemiaminal formation.
View Article and Find Full Text PDFThiol-reactive Michael acceptors are commonly used for the formation of chemically cross-linked hydrogels. In this paper, we address the drawbacks of many Michael acceptors by introducing pyridazinediones as new cross-linking agents. Through the use of pyridazinediones and their mono- or dibrominated analogues, we show that the mechanical strength, swelling ratio, and rate of gelation can all be controlled in a pH-sensitive manner.
View Article and Find Full Text PDFCurr Opin Chem Biol
August 2023
Advances in the site-specific chemical modification of proteins, also referred to as protein bioconjugation, have proved instrumental in revolutionary approaches to designing new protein-based therapeutics. Of the sites available for protein modification, cysteine residues or the termini of proteins have proved especially popular owing to their favorable properties for site-specific modification. Strategies that, therefore, specifically target cysteine at the termini offer a combination of these favorable properties of cysteine and termini bioconjugation.
View Article and Find Full Text PDFCorrection for 'Use of pyridazinediones as extracellular cleavable linkers through reversible cysteine conjugation' by Calise Bahou , , 2019, , 14829-14832, https://doi.org/10.1039/C9CC08362F.
View Article and Find Full Text PDFCorrection for 'Tyrosine bioconjugation - an emergent alternative' by Peter A. Szijj , , 2020, , 9018-9028, https://doi.org/10.
View Article and Find Full Text PDFWith an ever-growing emphasis on sustainable synthesis, aerobic C-H activation (the use of oxygen in air to activate C-H bonds) represents a highly attractive conduit for the development of novel synthetic methodologies. Herein, we report the air mediated functionalisation of various saturated heterocycles and ethers aerobically generated radical intermediates to form new C-C bonds using acetylenic and vinyl triflones as radical acceptors. This enables access to a variety of acetylenic and vinyl substituted saturated heterocycles that are rich in synthetic value.
View Article and Find Full Text PDFHerein we report a fundamental discovery on the use of tris(dialkylamino)phosphine reagents for peptide and protein modification. We discovered that C-terminal thiophosphonium species, which are uniquely stable, could be selectively and rapidly generated from their disulfide counterparts. In sharp and direct contrast, internal thiophosphonium species rapidly degrade to dehydroalanine.
View Article and Find Full Text PDFDespite the fact that door-to-balloon times have been greatly reduced, the rates of death and the incidence of heart failure in patients with ST-segment elevation myocardial infarction (MI) have plateaued. There is still an unmet need to further reduce MI size in the reperfusion era. Most adjunctive therapies to enhance myocardial salvage have failed, but some have shown promise.
View Article and Find Full Text PDFSite-selective chemical methods for protein bioconjugation have revolutionized the fields of cell and chemical biology through the development of novel protein/enzyme probes bearing fluorescent, spectroscopic, or even toxic cargos. Herein, we report two new methods for the bioconjugation of α-oxo aldehyde handles within proteins using small molecule aniline and/or phenol probes. The "α-oxo-Mannich" and "catalyst-free aldol" ligations both compete for the electrophilic α-oxo aldehyde, which displays pH divergent reactivity proceeding through the "Mannich" pathway at acidic pH to afford bifunctionalized bioconjugates, and the "catalyst-free aldol" pathway at neutral pH to afford monofunctionalized bioconjugates.
View Article and Find Full Text PDFHerein we report a thiol-labile cysteine protecting group based on an unsaturated pyridazinedione (PD) scaffold. We establish compatibility of the PD in conventional solid phase peptide synthesis (SPPS), showcasing this in the on-resin synthesis of biologically relevant oxytocin. Furthermore, we establish the applicability of the PD protecting group towards both microwave-assisted SPPS and native chemical ligation (NCL) in a model system.
View Article and Find Full Text PDFProtecting group chemistry for the cysteine thiol group has enabled a vast array of peptide and protein chemistry over the last several decades. Increasingly sophisticated strategies for the protection, and subsequent deprotection, of cysteine have been developed, facilitating synthesis of complex disulfide-rich peptides, semisynthesis of proteins, and peptide/protein labelling and . In this review, we analyse and discuss the 60+ individual protecting groups reported for cysteine, highlighting their applications in peptide synthesis and protein science.
View Article and Find Full Text PDFLinkers that enable the site-selective synthesis of chemically modified proteins are of great interest to the field of chemical biology. Homogenous bioconjugates often show advantageous pharmacokinetic profiles and consequently increased efficacy . Cysteine residues have been exploited as a route to site-selectively modify proteins, and many successfully approved therapeutics make use of cysteine directed conjugation reagents.
View Article and Find Full Text PDFProtein bioconjugation is an increasingly important field of research, with wide-ranging applications in areas such as therapeutics and biomaterials. Traditional cysteine and lysine bioconjugation strategies are widely used and have been extensively researched, but in some cases they are not appropriate and alternatives are needed or they are not compatible with one another to enable the formation of dually (and distinctly) modified dual-conjugates (an increasingly desired class of bioconjugates). Here we review the heretofore less explored approach of tyrosine bioconjugation, which is rapidly becoming a constructive alternative/complement to the more well-established strategies.
View Article and Find Full Text PDFHerein we report a retro-Michael deconjugation pathway of thiol-pyridazinedione linked protein bioconjugates to provide a novel cleavable linker technology. We demonstrate that the novel pyridazinedione linker does not suffer from off-target modification with blood thiols (e.g.
View Article and Find Full Text PDFModification of immunoglobulin G (IgG) 1 proteins in cancer treatment is a rapidly growing field of research. Antibody-drug conjugates (ADCs) exploit the targeted nature of this immunotherapy by conjugating highly potent drugs to antibodies, allowing for effective transport of cargo(s) to cancerous cells. Of the many bioconjugation strategies now available for the formation of highly homogeneous ADCs, disulfide modification is considered an effective, low-cost, and widely accepted method for modifying IgG1s for improved clinical benefit.
View Article and Find Full Text PDFThe bioconjugation of proteins with small molecules has proved an invaluable strategy for probing and perturbing biological mechanisms. The general use of chemical methods for protein functionalisation can be limited however by the requirement for complicated reaction partners to be present in large excess, and harsh conditions which are incompatible with many protein scaffolds. Herein we describe a site-selective organocatalyst-mediated protein aldol ligation (OPAL) that affords stable carbon-carbon linked bioconjugates at neutral pH.
View Article and Find Full Text PDFA dominant human gut microbe, the well studied symbiont Bacteroides thetaiotaomicron (Bt), is a glyco-specialist that harbors a large repertoire of genes devoted to carbohydrate processing. Despite strong similarities among them, many of the encoded enzymes have evolved distinct substrate specificities, and through the clustering of cognate genes within operons termed polysaccharide-utilization loci (PULs) enable the fulfilment of complex biological roles. Structural analyses of two glycoside hydrolase family 92 α-mannosidases, BT3130 and BT3965, together with mechanistically relevant complexes at 1.
View Article and Find Full Text PDFProtein bioconjugation frequently makes use of aldehydes as reactive handles, with methods for their installation being highly valued. Here a new, powerful strategy to unmask a reactive protein aldehyde is presented. A genetically encoded caged glyoxyl aldehyde, situated in solvent-accessible locations, can be rapidly decaged through treatment with just one equivalent of allylpalladium(ii) chloride dimer at physiological pH.
View Article and Find Full Text PDFThe incorporation of aldehyde handles into proteins, and subsequent chemical reactions thereof, is rapidly proving to be an effective way of generating homogeneous, covalently linked protein constructs that can display a vast array of functionality. In this review, we discuss methods for introducing aldehydes into target proteins, and summarise the ligation strategies for site-selective modification of proteins containing this class of functional handles.
View Article and Find Full Text PDFα-Mannosidases and α-mannanases have attracted attention for the insight they provide into nucleophilic substitution at the hindered anomeric center of α-mannosides, and the potential of mannosidase inhibitors as cellular probes and therapeutic agents. We report the conformational itinerary of the family GH76 α-mannanases studied through structural analysis of the Michaelis complex and synthesis and evaluation of novel aza/imino sugar inhibitors. A Michaelis complex in an (O) S2 conformation, coupled with distortion of an azasugar in an inhibitor complex to a high energy B2,5 conformation are rationalized through ab initio QM/MM metadynamics that show how the enzyme surface restricts the conformational landscape of the substrate, rendering the B2,5 conformation the most energetically stable on-enzyme.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
February 2015
The large bowel microbiota, a complex ecosystem resident within the gastrointestinal tract of all human beings and large mammals, functions as an essential, nonsomatic metabolic organ, hydrolysing complex dietary polysaccharides and modulating the host immune system to adequately tolerate ingested antigens. A significant member of this community, Bacteroides thetaiotaomicron, has evolved a complex system for sensing and processing a wide variety of natural glycoproducts in such a way as to provide maximum benefit to itself, the wider microbial community and the host. The immense ability of B.
View Article and Find Full Text PDF