Publications by authors named "Richard Sibly"

Understanding the role of natural selection in driving evolutionary change requires accurate estimates of the strength of selection acting at the genetic level in the wild. This is challenging to achieve but may be easier in the case of populations in migration-selection balance. When two populations are at equilibrium under migration-selection balance, there exist loci whose alleles are selected different ways in the two populations.

View Article and Find Full Text PDF

Sexual imprinting is widespread in birds and other species but its existence requires explanation. Our results suggest that sexual imprinting leads to speciation in locally-adapted populations if a neutral mating cue-e.g.

View Article and Find Full Text PDF

Mature temperate woodlands are commonly dominated by ectomycorrhizal trees, whereas understory plants predominantly form arbuscular mycorrhizal associations. Due to differences in plant-fungus compatibility between canopy and ground layer vegetation the 'mycorrhizal mediation hypothesis' predicts that herbaceous plant establishment may be limited by a lack of suitable mycorrhizal fungal inoculum. We examined plant species data for 103 woodlands across Great Britain recorded in 1971 and in 2000 to test whether herbaceous plant species richness was related to the proportion of arbuscular mycorrhizal woody plants.

View Article and Find Full Text PDF

Fishery management relies on forecasts of fish abundance over time and space, on scales of months and kilometres. While much research has focussed on the drivers of fish populations, there has been less investigation of the decisions made day-to-day by fishers and their subsequent impact on fishing pressure. Studies that focus on the fisher decisions of smaller vessels may be particularly important due to the prevalence of smaller vessels in many fisheries and their potential vulnerability to bad weather and economic change.

View Article and Find Full Text PDF

In 2018 we published a spatially-explicit individual-based model (IBM) that uses satellite-derived maps of food availability and temperature to predict Northeast Atlantic mackerel (Scomber scombrus, NEAM) population dynamics. Since then, to address various ecological questions, we have extended the IBM to include additional processes and data. Throughout its development, technical documents have been provided in the form of e.

View Article and Find Full Text PDF

Dispersal ability is key to species persistence in times of environmental change. Assessing a species' vulnerability and response to anthropogenic changes is often performed using one of two methods: correlative approaches that infer dispersal potential based on traits, such as wingspan or an index of mobility derived from expert opinion, or a mechanistic modeling approach that extrapolates displacement rates from empirical data on short-term movements.Here, we compare and evaluate the success of the correlative and mechanistic approaches using a mechanistic random-walk model of butterfly movement that incorporates relationships between wingspan and sex-specific movement behaviors.

View Article and Find Full Text PDF

Soil animals play important roles in ecosystem functioning and stability, but the environmental controls on their communities are not fully understood. In this study, we compiled a dataset of soil animal communities for which the abundance and body mass of multiple soil animal groups were recorded. The mass-abundance scaling relationships were then used to investigate multiple environmental controls on soil animal community composition.

View Article and Find Full Text PDF

Dispersal is a key process affecting population persistence and major factors affecting dispersal rates are the amounts, connectedness and properties of habitats in landscapes. We present new data on the butterfly Maniola jurtina in flower-rich and flower-poor habitats that demonstrates how movement and behaviour differ between sexes and habitat types, and how this effects consequent dispersal rates. Females had higher flight speeds than males, but their total time in flight was four times less.

View Article and Find Full Text PDF

Maynard Smith's ( 1966, 100, 637) suggestion that in some cases a prerequisite for speciation is the existence of local ecological adaptations has not received much attention to date. Here, we test the hypothesis using a model like that of Maynard Smith but differing in the way animals disperse between niches. In previous studies, males disperse randomly between niches but females stay put in their natal niche.

View Article and Find Full Text PDF
Article Synopsis
  • The article presents data on the movement behavior of four grassland butterfly species over three years at four different sites in southern England.
  • Data included 783 unique movement tracks collected using standard methods, measuring step distances and turning angles.
  • The study aimed to analyze butterfly movement behaviors in varied habitats, such as nectar-rich field margins and meadows, and to use this data for creating individual-based movement models.
View Article and Find Full Text PDF

Background: Understanding the factors influencing movement is essential to forecasting species persistence in a changing environment. Movement is often studied using mechanistic models, extrapolating short-term observations of individuals to longer-term predictions, but the role of weather variables such as air temperature and solar radiation, key determinants of ectotherm activity, are generally neglected. We aim to show how the effects of weather can be incorporated into individual-based models of butterfly movement thus allowing analysis of their effects.

View Article and Find Full Text PDF

Teleosts such as tunas and billfish lay millions of tiny eggs weighing on the order of 0.001 g, whereas chondrichthyes such as sharks and rays produce a few eggs or live offspring weighing about 2% of adult body mass, as much as 10 000 g in some species. Why are the strategies so extreme, and why are intermediate ones absent? Building on previous work, we show quantitatively how offspring size reflects the relationship between growth and death rates.

View Article and Find Full Text PDF

Soil respiration represents a major carbon flux between terrestrial ecosystems and the atmosphere, and is expected to accelerate under climate warming. Despite its importance in climate change forecasts, however, our understanding of the effects of temperature on soil respiration (R) is incomplete. Using a metabolic ecology approach we link soil biota metabolism, community composition and heterotrophic activity to predict R rates across five biomes.

View Article and Find Full Text PDF

Most plant, animal and microbial species of widely varying body size and lifestyle are nearly equally fit as evidenced by their coexistence and persistence through millions of years. All organisms compete for a limited supply of organic chemical energy, derived mostly from photosynthesis, to invest in the two components of fitness: survival and production. All organisms are mortal because molecular and cellular damage accumulates over the lifetime; life persists only because parents produce offspring.

View Article and Find Full Text PDF

Stochastic computer simulations are often the only practical way of answering questions relating to ecological management. However, due to their complexity, such models are difficult to calibrate and evaluate. Approximate Bayesian Computation (ABC) offers an increasingly popular approach to this problem, widely applied across a variety of fields.

View Article and Find Full Text PDF

Genes that in certain conditions make their carriers altruistic are being identified, and altruism and selfishness have shown to be heritable in man. This raises the possibility that genetic polymorphisms for altruism/selfishness exist in man and other animals. Here we characterize some of the conditions in which genetic polymorphisms may occur.

View Article and Find Full Text PDF

The fundamental features of growth may be universal, because growth trajectories of most animals are very similar, but a unified mechanistic theory of growth remains elusive. Still needed is a synthetic explanation for how and why growth rates vary as body size changes, both within individuals over their ontogeny and between populations and species over their evolution. Here, we use Bertalanffy growth equations to characterize growth of ray-finned fishes in terms of two parameters, the growth rate coefficient, K, and final body mass, m∞.

View Article and Find Full Text PDF

Understanding the effects of individual organisms on material cycles and energy fluxes within ecosystems is central to predicting the impacts of human-caused changes on climate, land use, and biodiversity. Here we present a theory that integrates metabolic (organism-based bottom-up) and systems (ecosystem-based top-down) approaches to characterize how the metabolism of individuals affects the flows and stores of materials and energy in ecosystems. The theory predicts how the average residence time of carbon molecules, total system throughflow (TST), and amount of recycling vary with the body size and temperature of the organisms and with trophic organization.

View Article and Find Full Text PDF
Article Synopsis
  • There is evidence that mammal evolution in the Cenozoic era shows similar trends across different continents, indicating that global factors like climate and eco-evolutionary processes play a significant role.
  • The maximum size of large land mammal orders peaks at specific times—Middle Eocene, Oligocene, and Plio-Pleistocene—suggesting a pattern in their evolutionary history.
  • The Eocene peak correlates with high global temperatures and mammal diversity, while the robust Plio-Pleistocene peak aligns with global cooling, highlighting the complex relationship between environmental factors and mammal size evolution.
View Article and Find Full Text PDF

In mammals, the mass-specific rate of biomass production during gestation and lactation, here called maternal productivity, has been shown to vary with body size and lifestyle. Metabolic theory predicts that post-weaning growth of offspring, here termed juvenile productivity, should be higher than maternal productivity, and juveniles of smaller species should be more productive than those of larger species. Furthermore because juveniles generally have similar lifestyles to their mothers, across species juvenile and maternal productivities should be correlated.

View Article and Find Full Text PDF

Current European Union regulatory risk assessment allows application of pesticides provided that recovery of nontarget arthropods in-crop occurs within a year. Despite the long-established theory of source-sink dynamics, risk assessment ignores depletion of surrounding populations and typical field trials are restricted to plot-scale experiments. In the present study, the authors used agent-based modeling of 2 contrasting invertebrates, a spider and a beetle, to assess how the area of pesticide application and environmental half-life affect the assessment of recovery at the plot scale and impact the population at the landscape scale.

View Article and Find Full Text PDF

Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow-fast life-history continuum, and the allometric scaling of generation time to predict a clade's evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution.

View Article and Find Full Text PDF

Risk assessment for mammals is currently based on external exposure measurements, but effects of toxicants are better correlated with the systemically available dose than with the external administered dose. So for risk assessment of pesticides, toxicokinetics should be interpreted in the context of potential exposure in the field taking account of the timescale of exposure and individual patterns of feeding. Internal concentration is the net result of absorption, distribution, metabolism and excretion (ADME).

View Article and Find Full Text PDF

Where there is genetically based variation in selfishness and altruism, as in man, altruists with an innate ability to recognise and thereby only help their altruistic relatives may evolve. Here we use diploid population genetic models to chart the evolution of genetically-based discrimination in populations initially in stable equilibrium between altruism and selfishness. The initial stable equilibria occur because help is assumed subject to diminishing returns.

View Article and Find Full Text PDF

Theoretical and empirical studies of life history aim to account for resource allocation to the different components of fitness: survival, growth, and reproduction. The pioneering evolutionary ecologist David Lack [(1968) Ecological Adaptations for Breeding in Birds (Methuen and Co., London)] suggested that reproductive output in birds reflects adaptation to environmental factors such as availability of food and risk of predation, but subsequent studies have not always supported Lack's interpretation.

View Article and Find Full Text PDF