Aqueous processing of Ni-rich layered oxide cathode materials is a promising approach to simultaneously decrease electrode manufacturing costs, while bringing environmental benefits by substituting the state-of-the-art (often toxic and costly) organic processing solvents. However, an aqueous environment remains challenging due to the high reactivity of Ni-rich layered oxides towards moisture, leading to lithium leaching and Al current collector corrosion because of the resulting high pH value of the aqueous electrode paste. Herein, a facile method was developed to enable aqueous processing of LiNi Co Mn O (NCM811) by the addition of lithium sulfate (Li SO ) during electrode paste dispersion.
View Article and Find Full Text PDFWe report the performance of a conversion-type magnetite-decorated partially reduced graphene oxide (FeO@PrGO) negative electrode material in full-cell configuration with LiNiCoAlO (NCA) positive electrodes. To enable practical implementation of the conversion-type negative electrodes in full cells, the beneficial impact of electrochemical prelithiation on mitigating active lithium losses and improving cycle life is shown here for the first time in the literature. The initial Coulombic efficiency (ICE) of the full cells is improved from 70.
View Article and Find Full Text PDFNi-rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium-ion batteries for automotive applications. Aqueous processing of such materials, although desirable to reduce costs and improve sustainability, remains challenging due to the Li /H exchange upon contact with water, resulting in a pH increase and corrosion of the aluminum current collector. Herein, an example was given for tuning the properties of aqueous LiNi Co Mn O electrode pastes using a lithium polyacrylate-based binder to find the "sweet spot" for processing parameters and electrochemical performance.
View Article and Find Full Text PDFInvited for this month's cover is a combined work of the Helmholtz Institute Münster together with the MEET Battery Research Center and the Universities of Münster and Mainz. The cover shows multiple treatment choices for the modification of cathode active materials for lithium-ion batteries. Similar to a car wash program, the treatment will typically result in an improvement of the status quo.
View Article and Find Full Text PDFNi-rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium-ion batteries for automotive applications. Thermal and cycling stability issues originating from increasing Ni contents are addressed by mitigation strategies such as elemental bulk substitution ("doping") and surface coating. Although both approaches separately benefit the cycling stability, there are only few reports investigating the combination of two of such approaches.
View Article and Find Full Text PDFNi-rich NCM-based positive electrode materials exhibit appealing properties in terms of high energy density and low cost. However, these materials suffer from different degradation effects, especially at their particle surface. Therefore, in this work, tungsten oxide is evaluated as a protective inorganic coating layer on LiNiCoMnO (NCM-811) positive electrode materials for lithium-ion battery (LIB) cells and investigated regarding rate capability and cycling stability under different operation conditions.
View Article and Find Full Text PDF