Publications by authors named "Richard S Stewart"

Four-dimensional (4D) light imaging has been used to study behavior of small structures within motor nerve terminals of the thin transversus abdominis muscle of the garter snake. Raw data comprises time-lapse sequences of 3D z-stacks. Each stack contains 4-20 images acquired with epifluorescence optics at focal planes separated by 400-1,500 nm.

View Article and Find Full Text PDF

Activity at the vertebrate nerve-muscle synapse creates large macroendosomes (MEs) via bulk membrane infolding. Visualized with the endocytic probe FM1-43, most (94%) of the ∼25 MEs/terminal created by brief (30-Hz, 18-second) stimulation dissipate rapidly (∼1 minute) into vesicles. Others, however, remain for hours.

View Article and Find Full Text PDF

In prion diseases, the infectious isoform of the prion protein (PrP(Sc)) may subvert a normal, physiological activity of the cellular isoform (PrP(C)). A deletion mutant of the prion protein (Delta105-125) that produces a neonatal lethal phenotype when expressed in transgenic mice provides a window into the normal function of PrP(C) and how it can be corrupted to produce neurotoxic effects. We report here the surprising and unexpected observation that cells expressing Delta105-125 PrP and related mutants are hypersensitive to the toxic effects of two classes of antibiotics (aminoglycosides and bleomycin analogues) that are commonly used for selection of stably transfected cell lines.

View Article and Find Full Text PDF

Although PrP(Sc) is thought to be the infectious form of the prion protein, it may not be the form that is responsible for neuronal cell death in prion diseases. (Ctm)PrP is a transmembrane version of the prion protein that has been proposed to be a neurotoxic intermediate underlying prion-induced pathogenesis. To investigate this hypothesis, we have constructed transgenic mice that express L9R-3AV PrP, a mutant prion protein that is synthesized exclusively in the (Ctm)PrP form in transfected cells.

View Article and Find Full Text PDF

(Ctm)PrP is a transmembrane version of the prion protein that has been proposed to be a neurotoxic intermediate underlying prion-induced pathogenesis. In previous studies, we found that PrP molecules carrying mutations in the N-terminal signal peptide (L9R) and the transmembrane domain (3AV) were synthesized exclusively in the (Ctm)PrP form in transfected cell lines. To characterize the properties of (Ctm)PrP in a neuronal setting, we have utilized cerebellar granule neurons cultured from Tg(L9R-3AV) mice that developed a fatal neurodegenerative illness.

View Article and Find Full Text PDF

Inherited prion diseases are linked to mutations in the prion protein (PrP) gene, which favor conversion of PrP into a conformationally altered, pathogenic isoform. The cellular mechanism by which this process causes neurological dysfunction is unknown. It has been proposed that neuronal death can be triggered by accumulation of PrP in the cytosol because of impairment of proteasomal degradation of misfolded PrP molecules retrotranslocated from the endoplasmic reticulum (Ma, J.

View Article and Find Full Text PDF

A synthetic peptide homologous to region 106-126 of the prion protein (PrP) is toxic to cells expressing PrP, but not to PrP knockout neurons, arguing for a specific role of PrP in mediating the peptide's activity. Whether this is related to a gain of toxicity or a loss of function of PrP is not clear. We explored the possibility that PrP106-126 triggered formation of PrP(Sc) or other neurotoxic PrP species.

View Article and Find Full Text PDF

The prion protein (PrP) can adopt multiple membrane topologies, including a fully translocated form (SecPrP), two transmembrane forms (NtmPrP and CtmPrP), and a cytosolic form. It is important to understand the factors that influence production of these species, because two of them, CtmPrP and cytosolic PrP, have been proposed to be key neurotoxic intermediates in certain prion diseases. In this paper, we perform a mutational analysis of PrP synthesized using an in vitro translation system in order to further define sequence elements that influence the formation of CtmPrP.

View Article and Find Full Text PDF

The cellular mechanisms by which prions cause neurological dysfunction are poorly understood. To address this issue, we have been using cultured cells to analyze the localization, biosynthesis, and metabolism of PrP molecules carrying mutations associated with familial prion diseases. We report here that mutant PrP molecules are delayed in their maturation to an endoglycosidase H-resistant form after biosynthetic labeling, suggesting that they are impaired in their exit from the endoplasmic reticulum (ER).

View Article and Find Full Text PDF