This study aimed to investigate the intrinsic efficiency of renewable alcohols, applied under autocatalytic conditions, for removing lignin from aspen and hot-water-extracted aspen while substantially preserving the lignin structure so as to facilitate various valorization strategies. Ethylene glycol (EG), propylene glycol (PG), 1,4-butanediol (BDO), ethanol (EtOH), and tetrahydrofurfuryl alcohol (THFA) were evaluated based on their lignin solubilization ability, expressed as the relative energy difference (RED) following the principles of the Hansen solubility theory. The findings indicate that alcohols with a higher lignin solubilization potential lead to increased delignification, almost 90%, and produce a lignin with a higher content of β-O-4 bonds, up to 68% of those found in aspen milled wood lignin, thereby indicating their potential for valorization through depolymerization.
View Article and Find Full Text PDFAggregated states of celluloses remain poorly understood, and therefore, the topic requires careful investigation. In this study, Raman, IR, and X-ray diffraction (XRDs) were used to study cotton microcrystalline cellulose (MCC) and MCC that has been ball-milled to various degrees. Raman and IR spectroscopy methods indicated that when these ball-milled samples were wet with water, most underwent conformational changes at the molecular level.
View Article and Find Full Text PDFA new method is proposed for estimation of cellulose crystallinity (CrI) based on 93 cm Raman band in spectra of cellulose I materials. In this method (93-Raman), CrI was determined based on regression that was developed using the ratios of peak-heights of the 93 and 1096 cm Raman bands (I/I). For calibration purposes, a set of eight samples, all derived from cotton microcrystalline cellulose Whatman CC31 were selected.
View Article and Find Full Text PDFOver the past several years there has been an increased number of applications of cellulosic materials in many sectors, including the food industry, cosmetics, and pharmaceuticals. However, to date, there are few studies investigating the potential adverse effects of cellulose nanocrystals (CNC). The objective of this study was to determine long-term outcomes on the male reproductive system of mice upon repeated pharyngeal aspiration exposure to CNC.
View Article and Find Full Text PDFBackground: Cellulose-based materials have been used for centuries to manufacture different goods derived from forestry and agricultural sources. In the growing field of nanocellulose applications, its uniquely engineered properties are instrumental for inventive products coming to competitive markets. Due to their high aspect ratio and stiffness, it is speculated that cellulose nanocrystals (CNC) may cause similar pulmonary toxicity as carbon nanotubes and asbestos, thus posing a potential negative impact on public health and the environment.
View Article and Find Full Text PDFCellulose nanofibrils (CNFs) are a class of cellulosic nanomaterials with high aspect ratios that can be extracted from various natural sources. Their highly crystalline structures provide the nanofibrils with excellent mechanical and thermal properties. The main challenges of CNFs in nanocomposite applications are associated with their high hydrophilicity, which makes CNFs incompatible with hydrophobic polymers.
View Article and Find Full Text PDFRaman spectroscopy was used to analyze cellulose nanocrystal (CNC) -polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nano-scale fraction of microcrystalline cellulose) and two of the three composites investigated used maleated PP as a coupling agent. Raman maps, based on cellulose and PP bands at 1098 and 1460 cm(-1), respectively, obtained at 1 μm spatial resolution showed that the CNCs were aggregated to various degrees in the PP matrix.
View Article and Find Full Text PDF