Publications by authors named "Richard S Conroy"

Genomic architecture appears to play crucial roles in health and a variety of diseases. How nuclear structures reorganize over different timescales is elusive, partly because the tools needed to probe and perturb them are not as advanced as needed by the field. To fill this gap, the National Institutes of Health Common Fund started a program in 2015, called the 4D Nucleome (4DN), with the goal of developing and ultimately applying technologies to interrogate the structure and function of nuclear organization in space and time.

View Article and Find Full Text PDF

Improvements in the sensitivity, content, and throughput of microscopy, in the depth and throughput of single-cell sequencing approaches, and in computational and modeling tools for data integration have created a portfolio of methods for building spatiotemporal cell atlases. Challenges in this fast-moving field include optimizing experimental conditions to allow a holistic view of tissues, extending molecular analysis across multiple timescales, and developing new tools for 1) managing large data sets, 2) extracting patterns and correlation from these data, and 3) integrating and visualizing data and derived results in an informative way. The utility of these tools and atlases for the broader scientific community will be accelerated through a commitment to findable, accessible, interoperable, and reusable data and tool sharing principles that can be facilitated through coordination and collaboration between programs working in this space.

View Article and Find Full Text PDF

This paper presents some recent developments in the field of wearable sensors and systems that are relevant to rehabilitation and provides examples of systems with evidence supporting their effectiveness for rehabilitation. A discussion of current challenges and future developments for selected systems is followed by suggestions for future directions needed to advance towards wider deployment of wearable sensors and systems for rehabilitation.

View Article and Find Full Text PDF

The adult human body is composed of nearly 37 trillion cells, each with potentially unique molecular characteristics. This Perspective describes some of the challenges and opportunities faced in mapping the molecular characteristics of these cells in specific regions of the body and highlights areas for international collaboration toward the broader goal of comprehensively mapping the human body with cellular resolution.

View Article and Find Full Text PDF

Background: Taraxacum officinale (L.) Weber (Asteraceae) has been extensively employed as a diuretic in traditional folk medicine and in modern phytotherapy in Europe, Asia, and the Americas without prior clinical trial substantiation.

Objectives: In this pilot study, a high-quality fresh leaf hydroethanolic extract of the medicinal plant T.

View Article and Find Full Text PDF

In the weeks following unilateral peripheral nerve injury, the deprived primary somatosensory cortex (SI) responds to stimulation of the ipsilateral intact limb as demonstrated by functional magnetic resonance imaging (fMRI) responses. The neuronal basis of these responses was studied by using high-resolution fMRI, in vivo electrophysiological recordings, and juxtacellular neuronal labeling in rats that underwent an excision of the forepaw radial, median, and ulnar nerves. These nerves were exposed but not severed in control rats.

View Article and Find Full Text PDF

An optical waveguide formed by a suspension of dielectric nanoparticles in a microchannel is described. The suspensions, chosen for their guiding and scattering properties, are silica and polystyrene particles that have diameters of 30-900 nm and are dispersed in water with volume fractions up to 10%. Changing the diameter and concentration of the particles causes the suspensions to transition from Rayleigh to Mie scattering and from single to multiple scattering.

View Article and Find Full Text PDF

This communication describes a long (1 cm), laser-pumped, liquid core-liquid cladding (L2) waveguide laser. This device provides a simple, high intensity, tunable light source for microfludic applications. Using a core solution of 2 mM rhodamine 640 perchlorate, optically pumped by a frequency-doubled Nd:YAG laser, we found that the threshold for lasing was as low as 22 muJ (16-ns pulse length) and had a slope efficiency up to 20%.

View Article and Find Full Text PDF

This report describes the manipulation of light in waveguides that comprise a liquid core and a liquid cladding (liq/liq waveguide). These waveguides are dynamic: Their structure and function depend on a continuous, laminar flow of the core and cladding liquids. Because they are dynamic, they can be reconfigured and adapted continuously in ways that are not possible with solid-state waveguides.

View Article and Find Full Text PDF