Publications by authors named "Richard Rivera"

Aims: Conventional patient-reported surveys, used for patients undergoing total hip arthroplasty (THA), are limited by subjectivity and recall bias. Objective functional evaluation, such as gait analysis, to delineate a patient's functional capacity and customize surgical interventions, may address these shortcomings. This systematic review endeavours to investigate the application of objective functional assessments in appraising individuals undergoing THA.

View Article and Find Full Text PDF

Objective: This study aimed to delineate the recovery patterns of regional oxygen saturation (SrO) in pediatric cardiac surgery patients subjected to remote ischemic preconditioning (RIPC), utilizing near-infrared spectroscopy (NIRS) for quantification. It also sought to establish the correlation between these perfusion patterns and postoperative clinical outcomes.

Design: A prospective longitudinal observational study.

View Article and Find Full Text PDF

Congenital heart diseases impact millions annually, with pediatric care lacking suitable risk assessment tools. This research seeks to illuminate the association between the global longitudinal strain (GLS) and the subsequent impact on postoperative outcomes, contributing to a deeper understanding of its predictive value in the pediatric population affected by congenital heart diseases. An observational, analytic, longitudinal, and prospective study was conducted from May 2022 to May 2023, including all patients under 18 undergoing heart surgery with cardiopulmonary bypass (CBP).

View Article and Find Full Text PDF

Vitamin B (B) deficiency causes neurological manifestations resembling multiple sclerosis (MS); however, a molecular explanation for the similarity is unknown. FTY720 (fingolimod) is a sphingosine 1-phosphate (S1P) receptor modulator and sphingosine analog approved for MS therapy that can functionally antagonize S1P. Here, we report that FTY720 suppresses neuroinflammation by functionally and physically regulating the B pathways.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an immune-mediated demyelinating disease that alters central nervous system (CNS) functions. Relapsing-remitting MS (RRMS) is the most common form, which can transform into secondary-progressive MS (SPMS) that is associated with progressive neurodegeneration. Single-nucleus RNA sequencing (snRNA-seq) of MS lesions identified disease-related transcriptomic alterations; however, their relationship to non-lesioned MS brain regions has not been reported and which could identify prodromal or other disease susceptibility signatures.

View Article and Find Full Text PDF

Systemic inflammation induces alterations in the finely tuned micromilieu of the brain that is continuously monitored by microglia. In the CNS, these changes include increased synthesis of the bioactive lipid lysophosphatidic acid (LPA), a ligand for the six members of the LPA receptor family (LPA). In mouse and human microglia, LPA belongs to a set of receptors that cooperatively detect danger signals in the brain.

View Article and Find Full Text PDF

The modification of the rutile TiO(110) surface with dopamine represents the best example of the functionalization of TiO-based nanoparticles with catecholamines, which is of great interest for sunlight harvesting and drug delivery. However, there is little information on the dopamine-TiO(110) adsorption complex in terms of thermodynamic properties and structural parameters such as bond coordination and orientation of the terminal ethyl-amino group. Here, we report a density functional theory (DFT) investigation of dopamine adsorption on the TiO(110) surface using the optB86b-vdW functional with a Hubbard-type correction to the Ti 3d orbitals, where = 3 eV.

View Article and Find Full Text PDF

Ponesimod is a sphingosine 1-phosphate (S1P) receptor (S1PR) modulator that was recently approved for treating relapsing forms of multiple sclerosis (MS). Three other FDA-approved S1PR modulators for MS-fingolimod, siponimod, and ozanimod-share peripheral immunological effects via common S1P interactions, yet ponesimod may access distinct central nervous system (CNS) mechanisms through its selectivity for the S1P receptor. Here, ponesimod was examined for S1PR internalization and binding, human astrocyte signaling and single-cell RNA-seq (scRNA-seq) gene expression, and in vivo using murine cuprizone-mediated demyelination.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a lysophospholipid that acts as an extracellular signal through the activation of cognate G protein-coupled receptors (GPCRs). There are six known LPA receptors (LPA). The first such receptor, LPA, was identified in the embryonic brain and has been studied extensively for gene expression throughout the body, including through studies of receptor-null mice.

View Article and Find Full Text PDF

Glutamate is the principal excitatory neurotransmitter in the human brain. Following neurotransmission, astrocytes remove excess extracellular glutamate to prevent neurotoxicity. Glutamate neurotoxicity has been reported in multiple neurologic diseases including multiple sclerosis (MS), representing a shared neurodegenerative mechanism.

View Article and Find Full Text PDF

The brain is composed of cells having distinct genomic DNA sequences that arise post-zygotically, known as somatic genomic mosaicism (SGM). One form of SGM is aneuploidy-the gain and/or loss of chromosomes-which is associated with mitotic spindle defects. The mitotic spindle orientation determines cleavage plane positioning and, therefore, neural progenitor cell (NPC) fate during cerebral cortical development.

View Article and Find Full Text PDF

LPA is one of six known receptors (LPA) for lysophosphatidic acid (LPA). Constitutive Lpar1 null mutant mice have been instrumental in identifying roles for LPA-LPA signaling in neurobiological processes, brain development, and behavior, as well as modeling human neurological diseases like neuropathic pain. Constitutive Lpar1 null mutant mice are protected from partial sciatic nerve ligation (PSNL)-induced neuropathic pain, however, the cell types that are functionally responsible for mediating this protective effect are unknown.

View Article and Find Full Text PDF
Article Synopsis
  • - Lysophosphatidic acid (LPA) is a vital lipid that impacts bone growth and remodeling, with global Lpar1-knockout mice showing significant bone growth defects.
  • - The study specifically investigates osteoblasts by creating osteoblast-specific Lpar1 knockout mice (Lpar1-∆Ob), which revealed issues like reduced bone mineralization and increased porosity, but no severe bone defects.
  • - Findings indicate that LPA plays a critical role in bone mass regulation, influencing osteocyte function and mineralization processes, which are crucial for maintaining bone health.
View Article and Find Full Text PDF

Neuropathic pain (NP) is a complex chronic pain state with a prevalence of almost 10% in the general population. Pharmacological options for NP are limited and weakly effective, so there is a need to develop more efficacious NP attenuating drugs. Activation of the type 1 lysophosphatidic acid (LPA) receptor is a crucial factor in the initiation of NP.

View Article and Find Full Text PDF

In this Article, the top label in Fig. 5d should read 'DISH 3/16' instead of 'DISH 3/17'. This error has been corrected online.

View Article and Find Full Text PDF

The diversity and complexity of the human brain are widely assumed to be encoded within a constant genome. Somatic gene recombination, which changes germline DNA sequences to increase molecular diversity, could theoretically alter this code but has not been documented in the brain, to our knowledge. Here we describe recombination of the Alzheimer's disease-related gene APP, which encodes amyloid precursor protein, in human neurons, occurring mosaically as thousands of variant 'genomic cDNAs' (gencDNAs).

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) activates cognate G protein-coupled receptors (GPCRs) to initiate biological signaling cascades. Lysophospholipid (LP) receptor binding properties remain incompletely assessed because of difficulties with ligand lipophilicity and lipid "stickiness." These inherent attributes produce high levels of nonspecific binding within cell-membrane preparations used to assess GPCRs, as has been shown in classical binding assays using radiolabeled ligands, making accurate measurements of lipid binding kinetics difficult to achieve.

View Article and Find Full Text PDF

Somatic copy number variations (CNVs) exist in the brain, but their genesis, prevalence, forms, and biological impact remain unclear, even within experimentally tractable animal models. We combined a transposase-based amplification (TbA) methodology for single-cell whole-genome sequencing with a bioinformatic approach for filtering unreliable CNVs (FUnC), developed from machine learning trained on lymphocyte V(D)J recombination. TbA-FUnC offered superior genomic coverage and removed >90% of false-positive CNV calls, allowing extensive examination of submegabase CNVs from over 500 cells throughout the neurogenic period of cerebral cortical development in Thousands of previously undocumented CNVs were identified.

View Article and Find Full Text PDF

Astrocytes have prominent roles in central nervous system (CNS) function and disease, with subpopulations defined primarily by morphologies and molecular markers often determined in cell culture. Here, we identify an astrocyte subpopulation termed immediate-early astrocytes () that is defined by functional c-Fos activation during CNS disease development. An unbiased screen for CNS cells showing c-Fos activation during experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis (MS), was developed by using inducible, TetTag c-Fos reporter mice that label activated cells with a temporally stable, nuclear green fluorescent protein (GFP).

View Article and Find Full Text PDF

The lymph node periphery is an important site for many immunological functions, from pathogen containment to the differentiation of helper T cells, yet the cues that position cells in this region are largely undefined. Here, through the use of a reporter for the signaling lipid S1P (sphingosine 1-phosphate), we found that cells sensed higher concentrations of S1P in the medullary cords than in the T cell zone and that the S1P transporter SPNS2 on lymphatic endothelial cells generated this gradient. Natural killer (NK) cells are located at the periphery of the lymph node, predominantly in the medulla, and we found that expression of SPNS2, expression of the S1P receptor S1PR5 on NK cells, and expression of the chemokine receptor CXCR4 were all required for NK cell localization during homeostasis and rapid production of interferon-γ by NK cells after challenge.

View Article and Find Full Text PDF

Human α1D-adrenoceptors are G protein-coupled receptors that mediate adrenaline/noradrenaline actions. There is a growing interest in identifying regulatory domains in these receptors and determining how they function. In this work, we show that the absence of the human α1D-adrenoceptor carboxyl tail results in altered ERK (extracellular signal-regulated kinase) and p38 phosphorylation states.

View Article and Find Full Text PDF

Dimethyl fumarate is an orally bioavailable compound for the treatment of multiple sclerosis and psoriasis. A mechanism involving nuclear factor erythroid 2-like 2 activation has been proposed to account for its efficacy in multiple sclerosis. Here, we report that dimethyl fumarate inhibits expression of integrin α4 on circulating lymphocytes in experimental autoimmune encephalomyelitis mice and also on activated human Jurkat T cells in a manner distinct from nuclear factor erythroid 2-like 2 activation.

View Article and Find Full Text PDF

Previous reports have shown that individual neurons of the brain can display somatic genomic mosaicism of unknown function. In this study, we report altered genomic mosaicism in single, sporadic Alzheimer's disease (AD) neurons characterized by increases in DNA content and amyloid precursor protein (APP) gene copy number. AD cortical nuclei displayed large variability with average DNA content increases of ~8% over non-diseased controls that were unrelated to trisomy 21.

View Article and Find Full Text PDF

Schwann cell (SC) migration is an important step preceding myelination and remyelination in the peripheral nervous system, and can be promoted by peptide factors like neuregulins. Here we present evidence that a lipid factor, lysophosphatidic acid (LPA), influences both SC migration and peripheral myelination through its cognate G protein-coupled receptor (GPCR) known as LPA1 . Ultrastructural analyses of peripheral nerves in mouse null-mutants for LPA1 showed delayed SC-to-axon segregation, polyaxonal myelination by single SCs, and thinner myelin sheaths.

View Article and Find Full Text PDF