Publications by authors named "Richard Prevost"

Objectives: The effects of reduced chewing loads on load bearing integrity of interradicular bone (IB) within dentoalveolar joints (DAJ) in rats were investigated.

Methods: Four-week-old Sprague Dawley rats (N = 60) were divided into two groups; rats were either fed normal food, which is hard-pellet food (HF) (N = 30), or soft-powdered chow (SF) (N = 30). Biomechanical testing of intact DAJs and mapping of the resulting mechanical strains within IBs from 8- through 24-week-old rats fed HF or SF were performed.

View Article and Find Full Text PDF

Purpose: The hydrodynamics in USP dissolution apparatus 3, at five different dip rates, was characterized by analyzing phase-averaged velocity fields obtained using Particle Image Velocimetry (PIV).

Methods: Phase locked 2 Component-PIV (2C-PIV) measurements were recorded on a typical dissolution apparatus 3 configuration with a black painted tablet fixed at the center of the bottom porous screen of the reciprocating cylinder. A trigger mechanism was employed to capture data over 12 phase positions for each reciprocation cycle.

View Article and Find Full Text PDF

This study details a method to calculate strains within interradicular alveolar bone using digital volume correlation on X-ray tomograms of intact bone-periodontal ligament-tooth fibrous joints. The effects of loading schemes (concentric and eccentric) and optical magnification on the resulting strain in alveolar bone will be investigated with an intent to correlate deformation gradients with data sets from other complementary techniques. Strain maps will be correlated with structural and site-specific mechanical properties obtained on the same specimen using atomic force microscopy and atomic force microscopy-based nanoindentation technique.

View Article and Find Full Text PDF

The effects of alveolar bone socket geometry and bone-implant contact on implant biomechanics, and resulting strain distributions in bone were investigated. Following extraction of lateral incisors on a cadaver mandible, implants were placed immediately and bone-implant contact area, stability implant biomechanics and bone strain were measured. In situ biomechanical testing coupled with micro X-ray microscopy (µ-XRM) illustrated less stiff bone-implant complexes (701-822 N/mm) compared with bone-periodontal ligament (PDL)-tooth complexes (791-913 N/mm).

View Article and Find Full Text PDF

Unlabelled: A novel linear-dendritic block copolymer has been synthesized and evaluated for targeted delivery. The use of the dendron as the micellar exterior block in this architecture allows the presentation of a relatively small quantity of ligands in clusters for enhanced targeting, thus maintaining a long circulation time of these "patchy" micelles. The polypeptide linear hydrophobic block drives formation of micelles that carry core-loaded drugs, and their unique design gives them extremely high stability in vivo.

View Article and Find Full Text PDF