Publications by authors named "Richard Pratt"

Early events in the reprogramming of fibroblasts to cardiac muscle cells are unclear. While various histone undergo modification and re-positioning, and these correlate with the activity of certain genes, it is unknown if these events are causal or happen in response to reprogramming. Histone modification and re-positioning would be expected to open up chromatin on lineage-specific genes and this can be ascertained by studying nucleosome architecture.

View Article and Find Full Text PDF

In contrast to neonates and lower organisms, the adult mammalian heart lacks any capacity to regenerate following injury. The vast majority of our understanding of cardiac regeneration is based on research in young animals. Research in aged individuals is rare.

View Article and Find Full Text PDF

In a previous report, we demonstrated that Cbx1, PurB and Sp3 inhibited cardiac muscle differentiation by increasing nucleosome density around cardiac muscle gene promoters. Since cardiac and skeletal muscle express many of the same proteins, we asked if Cbx1, PurB and Sp3 similarly regulated skeletal muscle differentiation. In a C2C12 model of skeletal muscle differentiation, Cbx1 and PurB knockdown increased myotube formation.

View Article and Find Full Text PDF

We have demonstrated that directly reprogramming cardiac fibroblasts into new cardiomyocytes via miR combo improves cardiac function in the infarcted heart. However, major challenges exist with delivery and efficacy. During a screening based approach to improve delivery, we discovered that C166-derived EVs were effective delivery agents for miR combo both in vitro and in vivo.

View Article and Find Full Text PDF

Reprogramming scar fibroblasts into cardiomyocytes has been proposed to reverse the damage associated with myocardial infarction. However, the limited improvement in cardiac function calls for enhanced strategies. We reported enhanced efficacy of our miR reprogramming cocktail miR combo (miR-1, miR-133a, miR-208a, and miR-499) via RNA-sensing receptor stimulation.

View Article and Find Full Text PDF

Carbon capture, utilization, and storage (CCUS) are a critical set of strategies to decarbonize the industrial and power sectors and to mitigate global climate change. Pipeline infrastructure connecting CO sources and sinks, if not planned strategically, can cause environmental and social impacts by disturbing local landscapes. We investigated the impacts of these considerations on optimal CO pipeline routing and sink locations by modifying and leveraging an open-source CCUS infrastructure model, We expanded from a cost-minimizing to a multiobjective framework, explicitly incorporating environmental protection objectives.

View Article and Find Full Text PDF

Directly reprogramming fibroblasts into cardiomyocytes improves cardiac function in the infarcted heart. However, the low efficacy of this approach hinders clinical applications. Unlike the adult mammalian heart, the neonatal heart has an intrinsic regenerative capacity.

View Article and Find Full Text PDF

Current methods to generate cardiomyocytes from induced pluripotent stem cells (iPSc) utilize broad-spectrum pharmacological inhibitors. These methods give rise to cardiomyocytes which are typically immature. Since we have recently demonstrated that cardiomyogenesis in vitro and in vivo requires Sfrp2, we asked if Sfrp2 would drive differentiation of human iPSc into cardiomyocytes.

View Article and Find Full Text PDF

We discovered that innate immunity plays an important role in the reprogramming of fibroblasts into cardiomyocytes. In this report, we define the role of a novel retinoic acid-inducible gene 1 Yin Yang 1 (Rig1:YY1) pathway. We found that fibroblast to cardiomyocyte reprogramming efficacy was enhanced by specific Rig1 activators.

View Article and Find Full Text PDF

miRNA-based cellular fate reprogramming offers an opportunity to investigate the mechanisms of long-term gene silencing. To further understand how genes are silenced in a tissue-specific manner, we leveraged our miRNA-based method of reprogramming fibroblasts into cardiomyocytes. Through screening approaches, we identified three proteins that were downregulated during reprogramming of fibroblasts into cardiomyocytes: heterochromatin protein Cbx1, transcriptional activator protein PurB, and transcription factor Sp3.

View Article and Find Full Text PDF

Cardiomyogenesis, the process by which the body generates cardiomyocytes, is poorly understood. We have recently shown that Sfrp2 promotes cardiomyogenesis in vitro. The objective of this study was to determine if Sfrp2 would similarly promote cardiomyogenesis in vivo.

View Article and Find Full Text PDF

Maize has played a key role in the sustenance and cultural traditions of the inhabitants of the southwestern USA for many centuries. Blue maize is an important component of the diverse landraces still cultivated in the region but the degree to which they are related is unknown. This research was designed to ascertain the genotypic, morphological, and phenotypic diversity of six representative southwestern blue maize landraces.

View Article and Find Full Text PDF

Reprogramming scar fibroblasts into new heart muscle cells has the potential to restore function to the injured heart. However, the effectiveness of reprogramming is notably low. We have recently demonstrated that the effectiveness of reprogramming fibroblasts into heart muscle cells (cardiomyocytes) is increased by the addition of RNA-sensing receptor ligands.

View Article and Find Full Text PDF

One aim of this experiment was to develop NIR calibrations for 20-grain components in 143 pigmented maize samples evaluated in four locations across New Mexico during 2013 and 2014. Based on reference analysis, prediction models were developed using principal component regression (PCR) and partial least squares (PLS). The predictive ability of calibrations was generally low, with the calibrations for methionine and glycine performing best by PCR and PLS.

View Article and Find Full Text PDF

Stem cell injections are an attractive therapeutic tool. It has been demonstrated that injected stem cells promote tissue repair and regeneration via paracrine mechanisms. However, the effects of injected stem cells continue for far longer than they are present.

View Article and Find Full Text PDF

Following heart injury, cardiomyocytes, are lost and are not regenerated. In their place, fibroblasts invade the dead tissue where they generate a scar, which reduces cardiac function. We and others have demonstrated that combinations of specific miRNAs (miR combo) or transcription factors (GMT), delivered by individual lenti-/retro-viruses in vivo, can convert fibroblasts into cardiomyocytes and improve cardiac function.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored the properties of eight floury blue maize varieties for making traditional foods like masa and tortillas, highlighting their unique physical traits compared to other maize types.
  • Results indicated that these blue varieties had softer kernels, which led to shorter cooking times during nixtamalization and variations in tortilla quality, including color and hardness.
  • Overall, while blue floury maize is suitable for tortilla production, the study recommends optimizing nixtamalization conditions to enhance quality across different varieties.
View Article and Find Full Text PDF

There is much interest over resident c-Kit(+) cells in tissue regeneration. Their role in cardiac regeneration has been controversial. In this study we aim to understand the in vivo behavior of cardiac c-Kit(+) cells at baseline and after myocardial infarction and in response to Sfrp2.

View Article and Find Full Text PDF

The process by which committed precursors mature into cardiomyocytes is poorly understood. We found that TLR3 inhibition blocked cardiomyocyte maturation; precursor cells committed to the cardiomyocyte lineage failed to express maturation genes and sarcomeres did not develop. Using various approaches, we found that the effects of TLR3 upon cardiomyocyte maturation were dependent upon the RelA subunit of nuclear factor kappa B (NFκB).

View Article and Find Full Text PDF

We have recently shown that hypoxia and Akt-induced stem cell factor (HASF) protects the heart from ischemia-induced damage and promotes cardiomyocyte proliferation. While we have identified certain signaling pathways responsible for these protective effects, the receptor mediating these effects was unknown. Here, we undertook studies to identify the HASF receptor.

View Article and Find Full Text PDF