Publications by authors named "Richard Pokorny"

Photolyases are efficient DNA repair enzymes that specifically repair either cyclobutane pyrimidine dimers or (6-4) photoproducts in a light-dependent cleavage reaction. The closely related classical cryptochrome blue light photoreceptors do not repair DNA lesions; instead they are involved in regulatory processes. CryB of Rhodobacter sphaeroides was until now described as a cryptochrome that affects light-dependent and singlet oxygen-dependent gene expression and is unusual in terms of its cofactor composition.

View Article and Find Full Text PDF

Members of the cryptochrome/photolyase family (CPF) of proteins utilize noncovalently bound light-absorbing cofactors for their biological function. Usually, the identity of these cofactors is determined after expression in heterologous systems leaving the question unanswered whether these cofactors are identical to the indigenous ones. Here, cryptochrome 3 from Arabidopsis thaliana was expressed as a fusion with the green fluorescent protein in Arabidopsis plants.

View Article and Find Full Text PDF

The modular architecture of aureochrome blue light receptors, found in several algal groups including diatoms, is unique by having the LOV-type photoreceptor domain fused to the C-terminus of its putative effector, an N-terminal DNA-binding bZIP module. The structural and functional understanding of aureochromes' light-dependent signaling mechanism is limited, despite their promise as an optogenetic tool. We show that class I aureochromes 1a and 1c from the diatom Phaeodactylum tricornutum are regulated in a light-independent circadian rhythm.

View Article and Find Full Text PDF

The ability to perceive geomagnetic fields (GMFs) represents a fascinating biological phenomenon. Studies on transgenic flies have provided evidence that photosensitive Cryptochromes (Cry) are involved in the response to magnetic fields (MFs). However, none of the studies tackled the problem of whether the Cry-dependent magnetosensitivity is coupled to the sole MF presence or to the direction of MF vector.

View Article and Find Full Text PDF

Ustilago maydis is a phytopathogenic fungus causing corn smut disease. It also is known for its extreme tolerance to UV- and ionizing radiation. It has not been elucidated whether light-sensing proteins, and in particular photolyases play a role in its UV-tolerance.

View Article and Find Full Text PDF

DASH (Drosophila, Arabidopsis, Synechocystis, Human)-type cryptochromes (cry-DASH) belong to a family of flavoproteins acting as repair enzymes for UV-B-induced DNA lesions (photolyases) or as UV-A/blue light photoreceptors (cryptochromes). They are present in plants, bacteria, various vertebrates, and fungi and were originally considered as sensory photoreceptors because of their incapability to repair cyclobutane pyrimidine dimer (CPD) lesions in duplex DNA. However, cry-DASH can repair CPDs in single-stranded DNA, but their role in DNA repair in vivo remains to be clarified.

View Article and Find Full Text PDF

Proteins from the cryptochrome/photolyase family utilize UV-A, blue or even red light to achieve such diverse functions as repair of DNA lesions by photolyases and signaling by cryptochromes. DASH-type cryptochromes retained the ability to repair cyclobutane pyrimidine dimers (CPDs) in single-stranded DNA regions in vitro. However, most organisms possess conventional CPD photolyases responsible for repair of these lesions in vivo.

View Article and Find Full Text PDF

The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric glass melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of the molten glass. The work presented here provides an experimental determination of the temperature distribution within the cold cap.

View Article and Find Full Text PDF

Photolyases and cryptochromes are evolutionarily related flavoproteins with distinct functions. While photolyases can repair UV-induced DNA lesions in a light-dependent manner, cryptochromes regulate growth, development and the circadian clock in plants and animals. Here we report about two photolyase-related proteins, named PhrA and PhrB, found in the phytopathogen Agrobacterium tumefaciens.

View Article and Find Full Text PDF

Class II photolyases ubiquitously occur in plants, animals, prokaryotes and some viruses. Like the distantly related microbial class I photolyases, these enzymes repair UV-induced cyclobutane pyrimidine dimer (CPD) lesions within duplex DNA using blue/near-UV light. Methanosarcina mazei Mm0852 is a class II photolyase of the archaeal order of Methanosarcinales, and is closely related to plant and metazoan counterparts.

View Article and Find Full Text PDF

Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair.

View Article and Find Full Text PDF

Flavoprotein radicals are important intermediates in many biochemical processes. In the blue light sensor plant cryptochrome, the radical state acts as a signaling state. An isolation and assignment of infrared bands of flavin radicals in the most relevant spectral region of carbonyl stretches is missing because of their overlap with absorption of water and the protein moiety.

View Article and Find Full Text PDF

Blue light receptors belonging to the cryptochrome/photolyase family are found in all kingdoms of life. The functions of photolyases in repair of UV-damaged DNA as well as of cryptochromes in the light-dependent regulation of photomorphogenetic processes and in the circadian clock in plants and animals are well analysed. In prokaryotes, the only role of members of this protein family that could be demonstrated is DNA repair.

View Article and Find Full Text PDF

Cryptochromes and DNA photolyases are related flavoproteins with flavin adenine dinucleotide as the common cofactor. Whereas photolyases repair DNA lesions caused by UV radiation, cryptochromes generally lack repair activity but act as UV-A/blue light photoreceptors. Two distinct electron transfer (ET) pathways have been identified in DNA photolyases.

View Article and Find Full Text PDF

DNA photolyases and cryptochromes (cry) form a family of flavoproteins that use light energy in the blue/UV-A region for the repair of UV-induced DNA lesions or for signaling, respectively. Very recently, it was shown that members of the DASH cryptochrome subclade repair specifically cyclobutane pyrimidine dimers (CPDs) in UV-damaged single-stranded DNA. Here, we report the crystal structure of Arabidopsis cryptochrome 3 with an in-situ-repaired CPD substrate in single-stranded DNA.

View Article and Find Full Text PDF

Cryptochrome (Cry) photoreceptors share high sequence and structural similarity with DNA repair enzyme DNA-photolyase and carry the same flavin cofactor. Accordingly, DNA-photolyase was considered a model system for the light activation process of cryptochromes. In line with this view were recent spectroscopic studies on cryptochromes of the CryDASH subfamily that showed photoreduction of the flavin adenine dinucleotide (FAD) cofactor to its fully reduced form.

View Article and Find Full Text PDF

Cryptochromes are almost ubiquitous blue-light receptors and act in several species as central components of the circadian clock. Despite being evolutionary and structurally related with DNA photolyases, a class of light-driven DNA-repair enzymes, and having similar cofactor compositions, cryptochromes lack DNA-repair activity. Cryptochrome 3 from the plant Arabidopsis thaliana belongs to the DASH-type subfamily.

View Article and Find Full Text PDF

Cryptochromes are flavoproteins which serve as blue-light receptors in plants, animals, fungi and prokaryotes and belong to the same protein family as the catalytically active DNA photolyases. Cryptochrome 3 from the plant Arabidopsis thaliana (cry3; 525 amino acids, 60.7 kDa) is a representative of the novel cryDASH subfamily of UV-A/blue-light receptors and has been expressed as a mature FAD-containing protein in Escherichia coli without the signal sequence that directs the protein into plant organelles.

View Article and Find Full Text PDF

The expression of the Tvsrh1 gene encoding conidial hydrophobin was investigated during the development of surface-cultivated Trichoderma viride mycelia under different illumination regimes. Three transcripts of the whole gene amplified from the total mRNA were found with lengths of 400, 323 and 272 bp. The 400-bp transcript was slowly converted to the shorter forms in the dark.

View Article and Find Full Text PDF

Microorganisms were isolated from lignite freshly excavated in the Záhorie coal mine (southwestern Slovakia) under conditions excluding contamination with either soil or air-borne microorganisms. The isolates represented both Prokarya and Eukarya (fungi). All were able to grow on standard media, although some microorganisms were unstable and became extinct during storage of coal samples.

View Article and Find Full Text PDF

The expression of glutamic acid decarboxylase gene and the laccase activity were measured during the development of surface-cultivated Trichoderma viride mycelia in order to examine their up-regulation by light. The results show that the changes in activity of GAD induced by light observed previously are caused by transcriptional regulation of gad gene expression in both submerged mycelia and aerial mycelia after photoinduction. The expression of tga gene encoding a T.

View Article and Find Full Text PDF

The U-(14)C-labelled glutamate uptake was measured in both sucrose- and glutamate-grown mycelia of Trichoderma viride. The biomass yield was five-fold lower with glutamate as a sole carbon source. The rate of glutamate transport measured at a glutamate concentration of 1 mM remained unchanged in glutamate-grown mycelia whereas the properties of the glutamate transport were substantially changed compared to sucrose-grown mycelia.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontdkef1kejita5hg98mud9f88a5e8lq9m): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once