Publications by authors named "Richard Pearson"

Motivation: Monitoring the genomic evolution of Plasmodium falciparum-the most widespread and deadliest of the human-infecting malaria species-is critical for making decisions in response to changes in drug resistance, diagnostic test failures, and vaccine effectiveness. The MalariaGEN data resources are the world's largest whole genome sequencing databases for Plasmodium parasites. The size and complexity of such data is a barrier to many potential end users in both public health and academic research.

View Article and Find Full Text PDF

Land use change is crucial to addressing the existential threats of climate change and biodiversity loss while enhancing food security [M. Zurek , , 1416-1421 (2022)]. The interconnected and spatially varying nature of the impacts of land use change means that these challenges must be addressed simultaneously [H.

View Article and Find Full Text PDF

Background: The population structure of the malaria parasite Plasmodium falciparum can reveal underlying adaptive evolutionary processes. Selective pressures to maintain complex genetic backgrounds can encourage inbreeding, producing distinct parasite clusters identifiable by population structure analyses.

Methods: We analysed population structure in 3783 P falciparum genomes from 21 countries across Africa, provided by the MalariaGEN Pf7 dataset.

View Article and Find Full Text PDF

Animal-mediated pollination is a key ecosystem service required to some extent by almost three-quarters of the leading human food crops in global food production. Anthropogenic pressures such as habitat loss and land-use intensification are causing shifts in ecological community composition, potentially resulting in declines in pollination services and impacting crop production. Previous research has often overlooked interspecific differences in pollination contribution, yet such differences mean that biodiversity declines will not necessarily negatively impact pollination.

View Article and Find Full Text PDF

Background: Metazoans inherited genes from unicellular ancestors that perform essential biological processes such as cell division, metabolism, and protein translation. Multicellularity requires careful control and coordination of these unicellular genes to maintain tissue integrity and homeostasis. Gene regulatory networks (GRNs) that arose during metazoan evolution are frequently altered in cancer, resulting in over-expression of unicellular genes.

View Article and Find Full Text PDF

By embedding a spatially explicit ecosystem services modelling tool within a policy simulator we examine the insights that natural capital analysis can bring to the design of policies for nature recovery. Our study is illustrated through a case example of policies incentivising the establishment of new natural habitat in England. We find that a policy mirroring the current practice of offering payments per hectare of habitat creation fails to break even, delivering less value in improved flows of ecosystem services than public money spent and only 26% of that which is theoretically achievable.

View Article and Find Full Text PDF

The high rates of protein synthesis and processing render multiple myeloma (MM) cells vulnerable to perturbations in protein homeostasis. The induction of proteotoxic stress by targeting protein degradation with proteasome inhibitors (PIs) has revolutionized the treatment of MM. However, resistance to PIs is inevitable and represents an ongoing clinical challenge.

View Article and Find Full Text PDF
Article Synopsis
  • Shifting diets toward more fruits and vegetables and less meat could improve public health and lower greenhouse gas emissions by converting grazing land to horticulture.
  • A study in Great Britain analyzed the impact of this land use change on over 800 species, finding that more species could benefit in terms of habitable area than those that would lose it.
  • The findings suggest that changing agricultural practices not only supports biodiversity but also helps adapt to climate change and promotes public health, creating multiple positive outcomes.
View Article and Find Full Text PDF

Philadelphia chromosome-positive B cell acute lymphoblastic leukemia (B-ALL), characterized by the fusion gene, remains a poor prognosis cancer needing new therapeutic approaches. Transcriptomic profiling identified up-regulation of oncogenic transcription factors ERG and c-MYC in B-ALL with ERG and c-MYC required for B-ALL in murine and human models. Profiling of ERG- and c-MYC-dependent gene expression and analysis of ChIP-seq data established ERG and c-MYC coordinate a regulatory network in B-ALL that controls expression of genes involved in several biological processes.

View Article and Find Full Text PDF

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge.

View Article and Find Full Text PDF

Ethiopia has the greatest burden of Plasmodium vivax in Africa, but little is known about the epidemiological landscape of parasites across the country. We analysed the genomic diversity of 137 P. vivax isolates collected nine Ethiopian districts from 2012 to 2016.

View Article and Find Full Text PDF

Malaria results in over 600,000 deaths annually, with the highest burden of deaths in young children living in sub-Saharan Africa. Molecular surveillance can provide important information for malaria control policies, including detection of antimalarial drug resistance. However, genome sequencing capacity in malaria-endemic countries is limited.

View Article and Find Full Text PDF

Colombia aims to eliminate malaria by 2030 but remains one of the highest burden countries in the Americas. Plasmodium vivax contributes half of all malaria cases, with its control challenged by relapsing parasitaemia, drug resistance and cross-border spread. Using 64 Colombian P.

View Article and Find Full Text PDF

Biodiversity underpins ecosystem functions that provide benefits to people, yet the role of rare and endangered species (RES) in supporting ecosystem services is unclear. Thus, it remains controversial whether arguments for conservation that focus on ecosystem services align with the protection of RES. We designed a systematic review protocol to critically assess the evidence for quantitative contributions of RES to terrestrial agricultural production, which is a key driver of biodiversity change and, simultaneously, could suffer from the loss of ecosystem services provided by biodiversity.

View Article and Find Full Text PDF

The mopane worm is an edible insect distributed across southern Africa. As a culturally important source of food, the mopane worm provides nutrition, livelihoods and improves wellbeing for rural communities across its range. However, this is strong evidence that insect populations are declining worldwide, and climate change is likely to cause many insect species to shift in their distributions.

View Article and Find Full Text PDF

In vitro evolution of drug resistance is a powerful approach for identifying antimalarial targets, however, key obstacles to eliciting resistance are the parasite inoculum size and mutation rate. Here we sought to increase parasite genetic diversity to potentiate resistance selections by editing catalytic residues of Plasmodium falciparum DNA polymerase δ. Mutation accumulation assays reveal a ~5-8 fold elevation in the mutation rate, with an increase of 13-28 fold in drug-pressured lines.

View Article and Find Full Text PDF

Spatial proteomics technologies have revealed an underappreciated link between the location of cells in tissue microenvironments and the underlying biology and clinical features, but there is significant lag in the development of downstream analysis methods and benchmarking tools. Here we present SPIAT (spatial image analysis of tissues), a spatial-platform agnostic toolkit with a suite of spatial analysis algorithms, and spaSim (spatial simulator), a simulator of tissue spatial data. SPIAT includes multiple colocalization, neighborhood and spatial heterogeneity metrics to characterize the spatial patterns of cells.

View Article and Find Full Text PDF

Malaria parasites break down host haemoglobin into peptides and amino acids in the digestive vacuole for export to the parasite cytoplasm for growth: interrupting this process is central to the mode of action of several antimalarial drugs. Mutations in the chloroquine (CQ) resistance transporter, pfcrt, located in the digestive vacuole membrane, confer CQ resistance in Plasmodium falciparum, and typically also affect parasite fitness. However, the role of other parasite loci in the evolution of CQ resistance is unclear.

View Article and Find Full Text PDF

Background: is an opportunistic parasitic infection. An immunocompromised state increases the risk of converting asymptomatic infection to symptomatic visceral leishmaniasis (VL), which has a ~5% fatality rate even with treatment. HIV coinfection increases the risk of death from VL.

View Article and Find Full Text PDF

We describe the MalariaGEN Pf7 data resource, the seventh release of genome variation data from the MalariaGEN network.  It comprises over 20,000 samples from 82 partner studies in 33 countries, including several malaria endemic regions that were previously underrepresented.  For the first time we include dried blood spot samples that were sequenced after selective whole genome amplification, necessitating new methods to genotype copy number variations.

View Article and Find Full Text PDF

Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P.

View Article and Find Full Text PDF

Background: Malaria outbreaks are important public health concerns that can cause resurgence in endemic regions approaching elimination. We investigated a Plasmodium falciparum outbreak in Attapeu Province, Laos, during the 2020-21 malaria season, using genomic epidemiology methods to elucidate parasite population dynamics and identify its causes.

Methods: In this genetic analysis, 2164 P falciparum dried blood spot samples were collected from southern Laos between Jan 1, 2017, and April 1, 2021, which included 249 collected during the Attapeu outbreak between April 1, 2020, and April 1, 2021, by routine surveillance.

View Article and Find Full Text PDF

The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood.

View Article and Find Full Text PDF

The aim of this review is to mark the 75th anniversary of the introduction of the original corneal contact lens of Tuohy in 1948. American documents in the public domain, such as census records and draft registration cards, were consulted in order to provide a more comprehensive biography of Kevin M Tuohy, inventor of the corneal contact lens, than those previously published. Perhaps due to a failure to consult original sources concerning the Tuohy corneal lens, some historical accounts have provided incomplete or incorrect information about its design and dimensions.

View Article and Find Full Text PDF

Hyperactivation of oncogenic pathways downstream of RAS and PI3K/AKT in normal cells induces a senescence-like phenotype that acts as a tumor-suppressive mechanism that must be overcome during transformation. We previously demonstrated that AKT-induced senescence (AIS) is associated with profound transcriptional and metabolic changes. Here, we demonstrate that human fibroblasts undergoing AIS display upregulated cystathionine-β-synthase (CBS) expression and enhanced uptake of exogenous cysteine, which lead to increased hydrogen sulfide (HS) and glutathione (GSH) production, consequently protecting senescent cells from oxidative stress-induced cell death.

View Article and Find Full Text PDF