Publications by authors named "Richard Paul Sorrentino"

While many quantifiable biological phenomena can be described by making use of an assumption of normality in the distribution of individual values, many biological phenomena are not accurately described by the normal distribution. An unquestioned assumption of normality of distribution of possible outcomes can lead to misinterpretation of data, which could have serious consequences. Thus it is extremely important to test the validity of an assumption of normality of possible outcomes.

View Article and Find Full Text PDF

Drosophila has emerged as an excellent model system in which to study cellular and genetic aspects of hematopoiesis. Under normal developmental conditions and in wild-type genetic backgrounds, Drosophila possesses two types of blood cells, crystal cells and plasmatocytes. Upon infestation by a parasitic wasp or in certain altered genetic backgrounds, a third hemocyte class called the lamellocyte becomes apparent.

View Article and Find Full Text PDF

Drosophila has emerged as an important model system to discover and analyze genes controlling hematopoiesis. One regulatory network known to control hemocyte differentiation is the Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) signal-transduction pathway. A constitutive activation mutation of the Janus kinase Hopscotch (hopscotch(Tumorous-lethal); hop(Tum-l)) results in a leukemia-like over-proliferation of hemocytes and copious differentiation of lamellocytes during larval stages.

View Article and Find Full Text PDF

Highly conserved during evolution, the enzyme Ubc9 activates the small ubiquitin-like modifier (SUMO) prior to its covalent ligation to target proteins. We have used mutations in the Drosophila Ubc9 (dUbc9) gene to understand Ubc9 functions in vivo. Loss-of-function mutations in dUbc9 cause strong mitotic defects in larval hematopoietic tissues, an increase in the number of hematopoietic precursors in the lymph gland and of mature blood cells in circulation, and an increase in the proportion of cyclin-B-positive cells.

View Article and Find Full Text PDF

GATA transcription factors comprise an evolutionarily conserved family of proteins that function in the specification and differentiation of various cell types during animal development. In this review, we examine current knowledge of the structure, expression, and function of the Pannier and Serpent GATA factors as they relate to cardiogenesis and hematopoiesis in the Drosophila system. We also assess the molecular and genetic characteristics of the Friend of GATA protein U-shaped, which serves as a regulator of Pannier and Serpent function in these two developmental processes.

View Article and Find Full Text PDF

Drosophila larvae defend themselves against parasitoid wasps by completely surrounding the egg with layers of specialized hemocytes called lamellocytes. Similar capsules of lamellocytes, called melanotic capsules, are also formed around "self" tissues in larvae carrying gain-of-function mutations in Toll and hopscotch. Constitutive differentiation of lamellocytes in larvae carrying these mutations is accompanied by high concentrations of plasmatocytes, the major hemocyte class in uninfected control larvae.

View Article and Find Full Text PDF

We describe a simple, inexpensive, and robust protocol for the quantification of phenol oxidase activity in insect hemolymph. Discrete volumes of hemolymph from Drosophila melanogaster larvae are applied to pieces of filter paper soaked in an L-3, 4-dihydroxyphenylalanine (L-DOPA) solution. Phenol oxidase present in the samples catalyzes melanin synthesis from the L-DOPA precursor, resulting in the appearance of a roughly circular melanized spot on the filter paper.

View Article and Find Full Text PDF

The mechanisms by which an organism becomes immune competent during its development are largely unknown. When infected by eggs of parasitic wasps, Drosophila larvae mount a complex cellular immune reaction in which specialized host blood cells, lamellocytes and crystal cells, are activated and recruited to build a capsule around the parasite egg to block its development. Here, we report that parasitization by the wasp Leptopilina boulardi leads to a dramatic increase in the number of both lamellocytes and crystal cells in the Drosophila larval lymph gland.

View Article and Find Full Text PDF