Publications by authors named "Richard Panayiotou"

The majority of patients with high grade serous ovarian cancer (HGSOC) develop recurrent disease and chemotherapy resistance. To identify drug combinations that would be effective in treatment of chemotherapy resistant disease, we examined the efficacy of drug combinations that target the three antiapoptotic proteins most commonly expressed in HGSOC-BCL2, BCL-XL, and MCL1. Co-inhibition of BCL2 and BCL-XL (ABT-263) with inhibition of MCL1 (S63845) induces potent synergistic cytotoxicity in multiple HGSOC models.

View Article and Find Full Text PDF

Purpose: Claudin-6 (CLDN6) is expressed at elevated levels in multiple human cancers including ovarian and endometrial malignancies, with little or no detectable expression in normal adult tissue. This expression profile makes CLDN6 an ideal target for development of a potential therapeutic antibody-drug conjugate (ADC). This study describes the generation and preclinical characterization of CLDN6-23-ADC, an ADC consisting of a humanized anti-CLDN6 monoclonal antibody coupled to monomethyl auristatin E (MMAE) via a cleavable linker.

View Article and Find Full Text PDF

The extent and importance of functional heterogeneity and crosstalk between tumor cells is poorly understood. Here, we describe the generation of clonal populations from a patient-derived ovarian clear cell carcinoma model which forms malignant ascites and solid peritoneal tumors upon intraperitoneal transplantation in mice. The clonal populations are engineered with secreted Gaussia luciferase to monitor tumor growth dynamics and tagged with a unique DNA barcode to track their fate in multiclonal mixtures during tumor progression.

View Article and Find Full Text PDF

Increased expression of PRKD1 and its gene product protein kinase D1 (PKD1) are linked to oncogenic signaling in pancreatic ductal adenocarcinoma, but a direct functional relationship to oncogenic KRas has not been established so far. We here describe the PRKD1 gene promoter as a target for oncogenic KRas signaling. We demonstrate that KRas-induced activation of the canonical NF-κB pathway is one mechanism of how PRKD1 expression is increased and identify the binding sites for NF-κB in the PRKD1 promoter.

View Article and Find Full Text PDF

The myocardin-related transcription factors (MRTF-A and MRTF-B) regulate cytoskeletal genes through their partner transcription factor SRF. The MRTFs bind G-actin, and signal-regulated changes in cellular G-actin concentration control their nuclear accumulation. The MRTFs also undergo Rho- and ERK-dependent phosphorylation, but the function of MRTF phosphorylation, and the elements and signals involved in MRTF-A nuclear export are largely unexplored.

View Article and Find Full Text PDF

Background & Aims: Pancreatitis is the most important risk factor for pancreatic ductal adenocarcinoma (PDAC). Pancreatitis predisposes to PDAC because it induces a process of acinar cell reprogramming known as acinar-to-ductal metaplasia (ADM)-a precursor of pancreatic intraepithelial neoplasia lesions that can progress to PDAC. Mutations in KRAS are found at the earliest stages of pancreatic tumorigenesis, and it appears to be a gatekeeper to cancer progression.

View Article and Find Full Text PDF

The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood.

View Article and Find Full Text PDF