A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In to In, that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2016
A variety of metal oxide films (InGaOx, AlOx, "HafSOx") prepared from aqueous solutions were found to have non-uniform electron density profiles using X-ray reflectivity. The inhomogeneity in HafSOx films (Hf(OH)4-2x-2y(O2)x(SO4)y·zH2O), which are currently under investigation as inorganic resists, were studied in more detail by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and medium-energy ion scattering (MEIS). The HAADF-STEM images show a greater concentration of heavy atoms near the surface of a single-layer film.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2014
High-resolution transmission electron microscopy (TEM) imaging and energy-dispersive X-ray spectroscopy (EDS) chemical mapping have been used to examine key processing steps that enable sub-20-nm lithographic patterning of the material Hf(OH)4-2x-2y(O2)x(SO4)y·qH2O (HafSOx). Results reveal that blanket films are smooth and chemically homogeneous. Upon exposure with an electron beam, the films become insoluble in aqueous tetramethylammonium hydroxide [TMAH(aq)].
View Article and Find Full Text PDF