Philos Trans A Math Phys Eng Sci
May 2023
We exhibit examples of high-dimensional unimodal posterior distributions arising in nonlinear regression models with Gaussian process priors for which Markov chain Monte Carlo (MCMC) methods can take an exponential run-time to enter the regions where the bulk of the posterior measure concentrates. Our results apply to worst-case initialized ('cold start') algorithms that are local in the sense that their step sizes cannot be too large on average. The counter-examples hold for general MCMC schemes based on gradient or random walk steps, and the theory is illustrated for Metropolis-Hastings adjusted methods such as preconditioned Crank-Nicolson and Metropolis-adjusted Langevin algorithm.
View Article and Find Full Text PDF