A prominent surface loop links the first two beta strands of the lipoyl domain (E2plip) from the pyruvate dehydrogenase multienzyme complex of Escherichia coli. We show here that shortening this loop by two residues generates a protein that populates two structurally distinct stable conformers: an active, native-like monomer (HM) and a functionally compromised misfolded dimer (LM). Conversion of LM to HM was observed after exposure to temperatures above 50 degrees C.
View Article and Find Full Text PDFIcosahedral pyruvate dehydrogenase (PDH) enzyme complexes are molecular machines consisting of a central E2 core decorated by a shell of peripheral enzymes (E1 and E3) found localized at a distance of approximately 75-90 A from the core. Using a combination of biochemical, biophysical, and cryo-electron microscopic techniques, we show here that the gap between the E2 core and the shell of peripheral enzymes is maintained by the flexible but extended conformation adopted by 60 linker polypeptides that radiate outwards from the inner E2 core, irrespective of the E1 or E3 occupancy. The constancy of the gap is thus not due to protein-protein interactions in the outer protein shell.
View Article and Find Full Text PDFThe lipoyl domain of the dihydrolipoyl succinyltransferase (E2o) component of the 2OGDH (2-oxoglutarate dehydrogenase) multienzyme complex houses the lipoic acid cofactor through covalent attachment to a specific lysine side chain residing at the tip of a beta-turn. Residues within the lipoyl-lysine beta-turn and a nearby prominent loop have been implicated as determinants of lipoyl domain structure and function. Protein engineering of the Escherichia coli E2o lipoyl domain (E2olip) revealed that removal of residues from the loop caused a major structural change in the protein, which rendered the domain incapable of reductive succinylation by 2-oxoglutarate decarboxylase (E1o) and reduced the lipoylation efficiency.
View Article and Find Full Text PDFTwo-dimensional (15)N-heteronuclear single-quantum coherence (HSQC) NMR studies with a di-domain (lipoyl domain+ linker+ peripheral subunit-binding domain) of the dihydrolipoyl acetyltransferase (E2) component of the pyruvate dehydrogenase complex of Bacillus stearothermophilus allowed a molecular comparison of the need for lipoic acid to be covalently attached to the lipoyl domain in order to undergo reductive acetylation by the pyruvate decarboxylase (E1) component, in contrast with the ability of free lipoic acid to serve as substrate for the dihydrolipoyl dehydrogenase (E3) component. Tethering the lipoyl domain to the peripheral subunit-binding domain in a complex with E1 or E3 rendered the system more like the native enzyme complex, compared with the use of a free lipoyl domain, yet of a size still amenable to investigation by NMR spectroscopy. Recognition of the tethered lipoyl domain by E1 was found to be ensured by intensive interaction with the lipoyl-lysine-containing beta-turn and with residues in the protruding loop close to the beta-turn.
View Article and Find Full Text PDFLipoyl-lysine swinging arms are crucial to the reactions catalysed by the 2-oxo acid dehydrogenase multienzyme complexes. A gene encoding a putative lipoate protein ligase (LplA) of Thermoplasma acidophilum was cloned and expressed in Escherichia coli. The recombinant protein, a monomer of molecular mass 29 kDa, was catalytically inactive.
View Article and Find Full Text PDFThe pyruvate dehydrogenase multienzyme complexes are among the largest multifunctional catalytic machines in cells, catalyzing the production of acetyl CoA from pyruvate. We have previously reported the molecular architecture of an 11-MDa subcomplex comprising the 60-mer icosahedral dihydrolipoyl acetyltransferase (E2) decorated with 60 copies of the heterotetrameric (alpha(2)beta(2)) 153-kDa pyruvate decarboxylase (E1) from Bacillus stearothermophilus (Milne, J. L.
View Article and Find Full Text PDFFilamentous bacteriophages Pf1 and Pf3 infect Pseudomonas aeruginosa strains K and O, respectively. We show here that the capsids of these bacteriophages each contain a few copies of a minor coat protein (designated g3p) of high molecular mass, which serves as a pilus adsorption protein, much like the protein g3p of the Ff bacteriophages which infect Escherichia coli. Bacteriophage Pf1 was observed to interact with the type IV PAK pilus whereas bacteriophage Pf3 interacted with the conjugative RP4 pilus and not with the type IV PAO pilus.
View Article and Find Full Text PDFThe pyruvate dehydrogenase (PDH) multienzyme complex is central to oxidative metabolism. We present the first crystal structure of a complex between pyruvate decarboxylase (E1) and the peripheral subunit binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2). The interface is dominated by a "charge zipper" of networked salt bridges.
View Article and Find Full Text PDFA (15)N-labelled peripheral-subunit binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2p) and the dimer of a solubilized interface domain (E3int) derived from the dihydrolipoyl dehydrogenase (E3) were used to investigate the basis of the interaction of E2p with E3 in the assembly of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Thirteen of the 55 amino acids in the PSBD show significant changes in either or both of the (15)N and (1)H amide chemical shifts when the PSBD forms a 1 : 1 complex with E3int. All of the 13 amino acids reside near the N-terminus of helix I of PSBD or in the loop region between helix II and helix III.
View Article and Find Full Text PDFThiamine diphosphate (ThDP) is used as a cofactor in many key metabolic enzymes. We present evidence that the ThDPs in the two active sites of the E1 (EC 1.2.
View Article and Find Full Text PDFTwo non-pathogenic scaffolds (represented by the filamentous bacteriophage fd and the dihydrolipoyl acetyltransferase E2 protein of the Bacillus stearothermophilus pyruvate dehydrogenase (PDH) complex) able to deliver human immunodeficiency virus (HIV)-1 antigenic determinants, were designed in our laboratories and investigated in controlled assay conditions. Based on a modification of the phage display technology, we developed an innovative concept for a safe and inexpensive vaccine in which conserved antigenic determinants of HIV-1 reverse transcriptase (RTase) were inserted into the N-terminal region of the major pVIII coat protein of bacteriophagefd virions. Analogously, we developed another antigen delivery system based on the E2 component from the PDH complex and capable of displaying large intact proteins on the surface of an icosahedral lattice.
View Article and Find Full Text PDFThe beta-subunit (E1beta) of the pyruvate decarboxylase (E1, alpha(2)beta(2)) component of the Bacillus stearothermophilus pyruvate dehydrogenase complex was comparatively modelled based on the crystal structures of the homologous 2-oxoisovalerate decarboxylase of Pseudomonas putida and Homo sapiens. Based on this homology modelling, alanine-scanning mutagenesis studies revealed that the negatively charged side chain of Glu285 and the hydrophobic side chain of Phe324 are of particular importance in the interaction with the peripheral subunit-binding domain of the dihydrolipoyl acetyltransferase component of the complex. These results help to identify the site of interaction on the E1beta subunit and are consistent with thermodynamic evidence of a mixture of electrostatic and hydrophobic interactions being involved.
View Article and Find Full Text PDFThe enzymes pyruvate decarboxylase (E1) and dihydrolipoyl dehydrogenase (E3) bind tightly but in a mutually exclusive manner to the peripheral subunit-binding domain (PSBD) of dihydrolipoyl acetyltransferase in the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. The use of directed mutagenesis, surface plasmon resonance detection and isothermal titration microcalorimetry revealed that several positively charged residues of the PSBD, most notably Arg135, play an important part in the interaction with both E1 and E3, whereas Met131 makes a significant contribution to the binding of E1 only. This indicates that the binding sites for E1 and E3 on the PSBD are overlapping but probably significantly different, and that additional hydrophobic interactions may be involved in binding E1 compared with E3.
View Article and Find Full Text PDFProteins show diverse responses when placed under mechanical stress. The molecular origins of their differing mechanical resistance are still unclear, although the orientation of secondary structural elements relative to the applied force vector is thought to have an important function. Here, by using a method of protein immobilization that allows force to be applied to the same all-beta protein, E2lip3, in two different directions, we show that the energy landscape for mechanical unfolding is markedly anisotropic.
View Article and Find Full Text PDFPyruvate decarboxylase (E1) catalyzes the first two reactions of the four involved in oxidative decarboxylation of pyruvate by the pyruvate dehydrogenase (PDH) multienzyme complex. It requires thiamin diphosphate to bring about the decarboxylation of pyruvate, which is followed by the reductive acetylation of a lipoyl group covalently bound to the N(6) amino group of a lysine residue in the second catalytic component, a dihydrolipoyl acetyltransferase (E2). Replacement of two histidine residues in the E1alpha and E1beta chains of the heterotetrameric E1 (alpha(2)beta(2)) component of the PDH complex of Bacillus stearothermophilus, considered possible proton donors at the active site, was carried out.
View Article and Find Full Text PDFThe icosahedral protein scaffold (1.5MDa) generated by self-assembly of the catalytic domains of the dihydrolipoyl acetyltransferase core of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus has been engineered to display 60 copies of one or more peptide epitopes on a single molecule (E2DISP). An E2DISP scaffold displaying pep23, a 15-residue B- and T-helper epitope from the reverse transcriptase of HIV-1, was able to induce a pep23-specific T-helper response in cell lines in vitro.
View Article and Find Full Text PDFLimited proteolysis of the pyruvate decarboxylase (E1, alpha2beta2) component of the pyruvate dehydrogenase (PDH) multienzyme complex of Bacillus stearothermophilus has indicated the importance for catalysis of a site (Tyr281-Arg282) in the E1alpha subunit (Chauhan, H.J., Domingo, G.
View Article and Find Full Text PDFVirions of filamentous bacteriophage fd are capable of displaying multiple copies of peptide epitopes and generating powerful immune responses to them. To investigate the antigen processing mechanisms in human B cell lines used as antigen presenting cells, the major coat protein (pVIII) in intact virions was fluorescently labeled, and its localization in various intracellular compartments was followed using confocal microscopy. We show that the virions were taken up and processed to yield peptides that reach both the major histocompatibility complex (MHC) class II compartment and the endoplasmic reticulum.
View Article and Find Full Text PDFElectron cryo-microscopy of 'single particles' is a powerful method to determine the three-dimensional (3D) architectures of complex cellular assemblies. The pyruvate dehydrogenase multi-enzyme complex couples the activity of three component enzymes (E1, E2 and E3) in the oxidative decarboxylation of pyruvate to generate acetyl-CoA, linking glycolysis and the tricarboxylic acid cycle. We report here a 3D model for an 11 MDa, icosahedral pyruvate dehydrogenase sub-complex, obtained by combining a 28 A structure derived from electron cryo-microscopy with previously determined atomic coordinates of the individual E1 and E2 components.
View Article and Find Full Text PDFStructural studies have shown that electrostatic interactions play a major part in the binding of dihydrolipoyl dehydrogenase (E3) to the peripheral subunit-binding domain (PSBD) of the dihydrolipoyl acyltransferase (E2) in the assembly of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. The binding is characterized by a small, unfavorable enthalpy change (deltaH degrees = +2.2 kcal/mol) and a large, positive entropy change (TdeltaS degrees = +14.
View Article and Find Full Text PDFThe crystal structure of the C-terminal domain III of Pseudomonas aeruginosa TolA has been determined at 1.9 A resolution. The fold is similar to that of the corresponding domain of Escherichia coli TolA, despite the limited amino acid sequence identity of the two proteins (20%).
View Article and Find Full Text PDFThe minor coat protein pIII at one end of the filamentous bacteriophage fd, mediates the infection of Escherichia coli cells displaying an F-pilus. pIII has three domains (D1, D2 and D3), terminating with a short hydrophobic segment at the C-terminal end. Domain D2 binds to the tip of F-pilus, which is followed by retraction of the pilus and penetration of the E.
View Article and Find Full Text PDFHeteronuclear NMR spectroscopy and other experiments indicate that the true substrate of the E1 component of 2-oxo acid dehydrogenase complexes is not lipoic acid but the lipoyl domain of the E2 component. E1 can recognize the lipoyl-lysine residue as such, but reductive acylation ensues only if the domain to which the lipoyl group is attached is additionally recognized by virtue of a mosaic of contacts distributed chiefly over the half of the domain that contains the lipoyl-lysine residue. The lipoyl-lysine residue may not be freely swinging, as supposed hitherto, but may adopt a preferred orientation pointing towards a nearby loop on the surface of the lipoyl domain.
View Article and Find Full Text PDF