Publications by authors named "Richard N L Lamptey"

Neurogenic hypertension (NH) is characterized by heightened sympathetic activity mediated by angiotensin II in specific brain areas including the paraventricular nucleus and circumventricular organs. While strategies targeting sympathetic activity have shown effectiveness in managing NH, their invasive nature hinders their widespread clinical adoption. Conversely, nose-to-brain drug delivery is emerging as a promising approach to access the brain with reduced invasiveness.

View Article and Find Full Text PDF

Elevated brain angiotensin II activity plays a key role in the development of neurogenic hypertension. While blood pressure (BP) control in neurogenic hypertension has been successfully demonstrated by regulating central angiotensin II activity, current techniques involving cerebrovascular injections of potential therapeutic agents are not suitable for clinical translation. To address this gap, we present the synthesis of dual-functionalized liposomes functionalized with targeting ligand and cell-penetrating peptide.

View Article and Find Full Text PDF

Chitosan-based polymeric micelles are promising non-viral nanocarriers for safe and targeted gene delivery. Multi-functionalized chitosan polymeric micelles were prepared by grafting fatty acid, cell-penetrating peptide, and mannose on the chitosan backbone. The polymeric micelles were subjected to surface morphology and surface topography using scanning electron microscopy and atomic force microscopy, respectively.

View Article and Find Full Text PDF

Multifunctionalized Chitosan-based polymeric micelles were used to deliver pVGF to the brain. VGF (non-acronymic) plays significant roles in neurogenesis and learning as well as synaptic and cognitive functions. Therefore, VGF gene therapy could be a better approach in developing effective therapeutics against Alzheimer's disease.

View Article and Find Full Text PDF

There is mounting experimental evidence that blocking angiotensin receptor type 1 activity can prevent the occurrence of hypertension in spontaneously hypertensive rats. Studies have proved this strategy via evasive means, such as intracerebrovascular injections, making clinical translation difficult. This study aimed to develop penetratin and transferrin functionalized liposomes as a delivery tool to safely deliver losartan potassium (an angiotensin receptor blocker) to the brain.

View Article and Find Full Text PDF

Central nervous system (CNS) disorders represent one of the leading causes of global health burden. Nonetheless, new therapies approved against these disorders are among the lowest compared to their counterparts. The absence of reliable and efficient in vitro blood-brain barrier (BBB) models resembling in vivo barrier properties stands out as a significant roadblock in developing successful therapy for CNS disorders.

View Article and Find Full Text PDF

Hypertension is a major health concern globally. Elevated blood pressure, initiated and maintained by the brain, is defined as neurogenic hypertension (NH), which accounts for nearly half of all hypertension cases. A significant increase in angiotensin II-mediated sympathetic nervous system activity within the brain is known to be the key driving force behind NH.

View Article and Find Full Text PDF

Multifunctional fatty acid grafted polymeric micelles are an effective and promising approach for drug and gene delivery to the brain. An alternative approach to bypass the blood-brain barrier is administration through intranasal route. Multifunctional fatty acid grafted polymeric micelles were prepared and characterized for pVGF delivery to the brain.

View Article and Find Full Text PDF

Neurodegenerative disorders are primarily characterized by neuron loss. The most common neurodegenerative disorders include Alzheimer's and Parkinson's disease. Although there are several medicines currently approved for managing neurodegenerative disorders, a large majority of them only help with associated symptoms.

View Article and Find Full Text PDF