Study Question: Can oocyte functionality be assessed by observing changes in their intracytoplasmic lipid droplets (LDs) profiles?
Summary Answer: Lipid profile changes can reliably be detected in human oocytes; lipid changes are linked with maternal age and impaired developmental competence in a mouse model.
What Is Known Already: In all cellular components, lipid damage is the earliest manifestation of oxidative stress (OS), which leads to a cascade of negative consequences for organelles and DNA. Lipid damage is marked by the accumulation of LDs.
Conception of a child at advanced parental age (> 35 years) has been steadily increasing in recent decades, especially in developed countries. Socio-economic factors, effective contraceptives, and the availability of Assisted Reproduction Technologies (ART) have a direct impact on postponing the decision to have a baby. ART enables reproductive success for people diagnosed as infertile or with reduced possibilities of becoming pregnant due to concomitant pathologies.
View Article and Find Full Text PDFBackground: DNA damage is a hazard that affects all cells of the body. DNA-damage repair (DDR) mechanisms are in place to repair damage and restore cellular function, as are other damage-induced processes such as apoptosis, autophagy and senescence. The resilience of germ cells and embryos in response to DNA damage is less well studied compared with other cell types.
View Article and Find Full Text PDFInflammation is an organism's physiological response to harmful septic and aseptic stimuli. This process begins locally through the influx of immune system cells to the damaged tissue and the subsequent activation and secretion of inflammatory mediators to restore homeostasis in the organism. Inflammation is regulated at many levels, and one of these levels is post-transcriptional regulation, which controls the half-life of transcripts that encode inflammatory mediators.
View Article and Find Full Text PDF