Publications by authors named "Richard Mirin"

Self-assembled InAs quantum dots (QDs) are promising optomechanical elements due to their excellent photonic properties and sensitivity to local strain fields. Microwave-frequency modulation of photons scattered from these efficient quantum emitters has been recently demonstrated using surface acoustic wave (SAW) cavities. However, for optimal performance, a gate structure is required to deterministically control the charge state and reduce the charge noise of the QDs.

View Article and Find Full Text PDF

Integrated coherent mid-infrared (mid-IR) sources are crucial for spectroscopy and quantum frequency conversion (QFC) to facilitate scalable fiber-based application of single photons. Direct mid-IR emission with broad tunability poses fundamental challenges from the gain media and mirror components. This paper presents a characterization of a second-order nonlinear platform.

View Article and Find Full Text PDF

A large-format mid-infrared single-photon imager with very low dark count rates would enable a broad range of applications in fields like astronomy and chemistry. Superconducting nanowire single-photon detectors (SNSPDs) are a mature photon-counting technology as demonstrated by their figures of merit such as high detection efficiencies and very low dark count rates. However, scaling SNSPDs to large array sizes for mid-infrared applications requires sophisticated readout architectures in addition to superconducting materials development.

View Article and Find Full Text PDF

III-V semiconductor quantum dots (QDs) are near-ideal and versatile single-photon sources. Because of the capacity for monolithic integration with photonic structures as well as optoelectronic and optomechanical systems, they are proving useful in an increasingly broad application space. Here, we develop monolithic circular dielectric gratings on bulk substrates - as opposed to suspended or wafer-bonded substrates - for greatly improved photon collection from InAs quantum dots.

View Article and Find Full Text PDF

State readout of trapped-ion qubits with trap-integrated detectors can address important challenges for scalable quantum computing, but the strong rf electric fields used for trapping can impact detector performance. Here, we report on NbTiN superconducting nanowire single-photon detectors (SNSPDs) employing grounded aluminum mirrors as electrical shielding that are integrated into linear surface-electrode rf ion traps. The shielded SNSPDs can be operated at applied rf trapping potentials of up to 54 V at 70 MHz and temperatures of up to 6 K, with a maximum system detection efficiency of 68 %.

View Article and Find Full Text PDF

W centers are trigonal defects generated by self-ion implantation in silicon that exhibit photoluminescence at 1.218 µm. We have shown previously that they can be used in waveguide-integrated all-silicon light-emitting diodes (LEDs).

View Article and Find Full Text PDF

Nonlinear frequency conversion plays a crucial role in advancing the functionality of next-generation optical systems. Portable metrology references and quantum networks will demand highly efficient second-order nonlinear devices, and the intense nonlinear interactions of nanophotonic waveguides can be leveraged to meet these requirements. Here we demonstrate second harmonic generation (SHG) in GaAs-on-insulator waveguides with unprecedented efficiency of 40 W for a single-pass device.

View Article and Find Full Text PDF

We present a 1024-element near-infrared imaging array of superconducting nanowire single photon detectors (SNSPDs) using a 32×32 row-column multiplexing architecture. The array has an active area of 0.96 × 0.

View Article and Find Full Text PDF

Single self-assembled InAs/GaAs quantum dots are promising bright sources of indistinguishable photons for quantum information science. However, their distribution in emission wavelength, due to inhomogeneous broadening inherent to their growth, has limited the ability to create multiple identical sources. Quantum frequency conversion can overcome this issue, particularly if implemented using scalable chip-integrated technologies.

View Article and Find Full Text PDF

We demonstrate the tunable quantum beat of single photons through the co-development of core nonlinear nanophotonic technologies for frequency-domain manipulation of quantum states in a common physical platform. Spontaneous four-wave mixing in a nonlinear resonator is used to produce non-degenerate, quantum-correlated photon pairs. One photon from each pair is then frequency shifted, without degradation of photon statistics, using four-wave mixing Bragg scattering in a second nonlinear resonator.

View Article and Find Full Text PDF

In atomically thin two-dimensional semiconductors such as transition metal dichalcogenides (TMDs), controlling the density and type of defects promises to be an effective approach for engineering light-matter interactions. We demonstrate that electron-beam irradiation is a simple tool for selectively introducing defect-bound exciton states associated with chalcogen vacancies in TMDs. Our first-principles calculations and time-resolved spectroscopy measurements of monolayer WSe_{2} reveal that these defect-bound excitons exhibit exceptional optical properties including a recombination lifetime approaching 200 ns and a valley lifetime longer than 1  μs.

View Article and Find Full Text PDF

We present a short-wave infrared (SWIR) single photon camera based on a single superconducting nanowire single photon detector (SNSPD) and compressive imaging. We show SWIR single photon imaging at a megapixel resolution with a low signal-to-background ratio around 0.6, show SWIR video acquisition at 20 frames per second and 64x64 pixel video resolution, and demonstrate sub-nanosecond resolution time-of-flight imaging.

View Article and Find Full Text PDF

We evaluate the performance of a mid-infrared emission spectrometer operating at wavelengths between 1.5 and 6 μm based on an amorphous tungsten silicide (a-WSi) superconducting nanowire single-photon detector (SNSPD). We performed laser induced fluorescence spectroscopy of surface adsorbates with sub-monolayer sensitivity and sub-nanosecond temporal resolution.

View Article and Find Full Text PDF

We report and characterize low-temperature, plasma-deposited deuterated silicon nitride films for nonlinear integrated photonics. With a peak processing temperature less than 300°C, it is back-end compatible with complementary metal-oxide semiconductor substrates. We achieve microresonators with a quality factor of up to 1.

View Article and Find Full Text PDF

In the past few years, physicists and engineers have demonstrated the possibility of utilizing multiple degrees of freedom of the photon to perform information processing tasks for a wide variety of applications. Furthermore, complex states of light offer the possibility of encoding and processing many bits of information in a single photon. However, the challenges involved in the process of extracting large amounts of information, encoded in photonic states, impose practical limitations to realistic quantum technologies.

View Article and Find Full Text PDF

Single self-assembled InAs/GaAs quantum dots are a promising solid-state quantum technology, with which vacuum Rabi splitting, single-photon-level nonlinearities, and bright, pure, and indistinguishable single-photon generation having been demonstrated. For such achievements, nanofabrication is used to create structures in which the quantum dot preferentially interacts with strongly-confined optical modes. An open question is the extent to which such nanofabrication may also have an adverse influence, through the creation of traps and surface states that could induce blinking, spectral diffusion, and dephasing.

View Article and Find Full Text PDF

The amplitude and phase of a material's nonlinear optical response provide insight into the underlying electronic dynamics that determine its optical properties. Phase-sensitive nonlinear spectroscopy techniques are widely implemented to explore these dynamics through demodulation of the complex optical signal field into its quadrature components; however, complete reconstruction of the optical response requires measuring both the amplitude and phase of each quadrature, which is often lost in standard detection methods. Here, we implement a heterodyne-detection scheme to fully reconstruct the amplitude and phase response of spectral hole-burning from InAs/GaAs charged quantum dots.

View Article and Find Full Text PDF

Single-quantum emitters are an important resource for photonic quantum technologies, constituting building blocks for single-photon sources, stationary qubits, and deterministic quantum gates. Robust implementation of such functions is achieved through systems that provide both strong light-matter interactions and a low-loss interface between emitters and optical fields. Existing platforms providing such functionality at the single-node level present steep scalability challenges.

View Article and Find Full Text PDF

Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector.

View Article and Find Full Text PDF

In contrast to UV photomultiplier tubes that are widely used in physical chemistry, mid-infrared detectors are notorious for poor sensitivity and slow time response. This helps explain why, despite the importance of infrared spectroscopy in molecular science, mid-infrared fluorescence is not more widely used. In recent years, several new technologies have been developed that open new experimental possibilities for research in the mid-infrared.

View Article and Find Full Text PDF

We present an approach to fabrication and packaging of integrated photonic devices that utilizes waveguide and detector layers deposited at near-ambient temperature. All lithography is performed with a 365 nm i-line stepper, facilitating low cost and high scalability. We have shown low-loss SiN waveguides, high-Q ring resonators, critically coupled ring resonators, 50/50 beam splitters, Mach-Zehnder interferometers (MZIs) and a process-agnostic fiber packaging scheme.

View Article and Find Full Text PDF

We demonstrate cryogenic, electrically injected, waveguide-coupled Si light-emitting diodes (LEDs) operating at 1.22 m. The active region of the LED consists of W centers implanted in the intrinsic region of a -- diode.

View Article and Find Full Text PDF

Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate and certify the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization-entangled pairs from parametric down-conversion and mapping one photon of each pair onto a rare-earth-ion-doped (REID) crystal using the atomic frequency comb (AFC) protocol.

View Article and Find Full Text PDF

We demonstrate postselection free heralded qubit amplification for Time-Bin qubits and single photon states in an all-fibre, telecom-wavelength, scheme that highlights the simplicity, stability and potential for fully integrated photonic solutions. Exploiting high-efficiency superconducting detectors, the gain, fidelity and the performance of the amplifier are studied as a function of loss. We also demonstrate the first heralded single photon amplifier with independent sources.

View Article and Find Full Text PDF
Article Synopsis
  • The study demonstrates a clear violation of local realism principles by using entangled photon pairs, ensuring all events are spacelike separated.
  • The setup includes advanced technology such as rapid random number generators and precise photon detectors, allowing for accurate measurements free from fair-sampling biases.
  • The results yield extremely low p values (as small as 5.9×10^{-9}), reinforcing the conclusion that local realism cannot explain the observed phenomena in the experiment.
View Article and Find Full Text PDF