Bipolar disorders (BDs) exhibit high heritability and symptoms typically first occur during late adolescence or early adulthood. Affected individuals may experience alternating bouts of mania/hypomania and depression, with euthymic periods of varying lengths interspersed between these extremes of mood. Clinical research studies have consistently demonstrated that BD patients have disturbances in circadian and seasonal rhythms, even when they are free of symptoms.
View Article and Find Full Text PDFThe consensus in the literature is that bipolar disorder is seasonal. We argue that there is finer detail to seasonality and that changes in mood and energy in bipolar disorder are dictated by the rate of change of solar insolation.
View Article and Find Full Text PDFBipolar disorders have an onset in late adolescence or early adulthood and patients may experience alternating episodes of mania and depression, with euthymic periods interspersed between these extremes of mood. Clinical research studies have shown that bipolar disorder patients exhibit disruptions in circadian and seasonal rhythms, even when they are symptom free. In addition, some bipolar patients display pronounced seasonal patterns in occurrence of manic and depressive episodes, time of year for disease onset, and age of onset.
View Article and Find Full Text PDFNeuropsychopharmacology
September 2019
Neurosci Biobehav Rev
February 2017
Cross-fostering of litters from soon after birth until weaning is a valuable tool to study the ways in which gene×environment interactions program the development of neural, physiological and behavioral characteristics of mammalian species. In laboratory mice and rats, the primary focus of this review, cross-fostering of litters between mothers of different strains or treatment groups (intraspecific) or between mothers of different species (interspecific) has been conducted over the past 9 decades. Areas of particular interest have included maternal effects on emotionality, social preferences, responses to stressful stimulation, nutrition and growth, blood pressure regulation, and epigenetic effects on brain development and behavior.
View Article and Find Full Text PDFPsychoneuroendocrinology
January 2017
Major advances in behavioral neuroscience have been facilitated by the development of consistent and highly reproducible experimental paradigms that have been widely adopted. In contrast, many different experimental approaches have been employed to expose laboratory mice and rats to acute versus chronic intermittent stress. An argument is advanced in this review that more consistent approaches to the design of chronic intermittent stress experiments would provide greater reproducibility of results across laboratories and greater reliability relating to various neural, endocrine, immune, genetic, and behavioral adaptations.
View Article and Find Full Text PDFIn this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress.
View Article and Find Full Text PDFMelittin, a cationic, amphiphilic polypeptide, has been reported to inhibit the ATPase activity of the catalytic portions of the mitochondrial (MF1) and chloroplast (CF1) ATP synthases. Gledhill and Walker [J.R.
View Article and Find Full Text PDFTwo highly conserved amino acid residues, an arginine and a glutamine, located near the C-terminal end of the gamma subunit, form a "catch" by hydrogen bonding with residues in an anionic loop on one of the three catalytic beta subunits of the bovine mitochondrial F1-ATPase [Abrahams, J. P., Leslie, A.
View Article and Find Full Text PDFBiochim Biophys Acta
July 2007
Electron transport, the proton gradient and ATP synthesis were determined in thylakoids that had been briefly exposed to a low concentration of trypsin during illumination. This treatment cleaves the gamma subunit of the ATP synthase into two large fragments that remain associated with the enzyme. Higher rates of electron transport are required to generate a given value of the proton gradient in the trypsin-treated membranes than in control membranes, indicating that the treated membranes are proton leaky.
View Article and Find Full Text PDFThe green alga Chlamydomonas reinhardtii is a model organism for the study of photosynthesis. The chloroplast ATP synthase is responsible for the synthesis of ATP during photosynthesis. Using genetic engineering and biolistic transformation, a string of eight histidine residues has been inserted into the amino-terminal end of the beta subunit of this enzyme in C.
View Article and Find Full Text PDFResearchers in the field of bioinformatics have developed a number of analytical programs and databases that are increasingly important for advancing biological research. Because bioinformatics programs are used to analyze, visualize, and/or compare biological data, it is likely that the use of these programs will have a positive impact on biology education. Over the past years, we have been working to help biology instructors introduce bioinformatics activities into their curricula by providing them with instructional materials that use bioinformatics programs and databases as educational tools.
View Article and Find Full Text PDFJ Bioenerg Biomembr
February 2006
Oxidized ATP synthase of spinach thylakoid membranes catalyzes high rates of ATP synthesis in the light, but very low rates of ATP hydrolysis in the dark. Reduction of the disulfide bond in the gamma subunit of the ATP synthase in the light enhances the rate of Mg2+-ATP hydrolysis in the dark. The light plus thiol-activated state decays in a few minutes in the dark after illumination in Tris buffer, but not when Tricine was used in place of Tris.
View Article and Find Full Text PDFJ Bioenerg Biomembr
October 2005
In contrast to everted mitochondrial inner membrane vesicles and eubacterial plasma membrane vesicles, the ATPase activity of chloroplast ATP synthase in thylakoid membranes is extremely low. Several treatments of thylakoids that unmask ATPase activity are known. Illumination of thylakoids that contain reduced ATP synthase (reduced thylakoids) promotes the hydrolysis of ATP in the dark.
View Article and Find Full Text PDFThe initial rate of Cu2+ movement across the thylakoid membrane of pea (Pisum sativum) chloroplasts was directly measured by stopped-flow spectrofluorometry using membranes loaded with the Cu(2+)-sensitive fluorophore Phen Green SK. Cu2+ transport was rapid, reaching completion within 0.5 s.
View Article and Find Full Text PDFThe ATP synthases from chloroplasts and Escherichia coli are regulated by several factors, one of which is the epsilon subunit. This small subunit is also required for ATP synthesis. Thylakoid membranes reconstituted with CF1 lacking the epsilon subunit (CF1-epsilon) exhibit no ATP synthesis and very high ATP hydrolysis.
View Article and Find Full Text PDFThe epsilon subunit of the ATP synthases from chloroplasts and Escherichia coli regulates the activity of the enzyme and is required for ATP synthesis. The epsilon subunit is not required for the binding of the catalytic portion of the chloroplast ATP synthase (CF1) to the membrane-embedded part (CFo). Thylakoid membranes reconstituted with CF1 lacking its epsilon subunit (CF1-epsilon) have high ATPase activity and no ATP synthesis activity, at least in part because the membranes are very leaky to protons.
View Article and Find Full Text PDFTwo peripheral signaling routes have been proposed to account for the ability of peripheral substances such as glucose to modulate memory processing in the brain. One possible signaling route is by crossing the blood-brain barrier to act directly on brain. A second route involves activation of peripheral nerves with resulting changes in neural activity carried by peripheral nerves to the brain.
View Article and Find Full Text PDFThe American Psychologist is the official journal of the American Psychological Association. As such, it is a valued outlet for articles dealing with reviews of current topics in psychology, policy issues, and critiques of current research. S.
View Article and Find Full Text PDFThe initial rate of Fe(2+) movement across the inner envelope membrane of pea (Pisum sativum) chloroplasts was directly measured by stopped-flow spectrofluorometry using membrane vesicles loaded with the Fe(2+)-sensitive fluorophore, Phen Green SK. The rate of Fe(2+) transport was rapid, coming to equilibrium within 3s. The maximal rate and concentration dependence of Fe(2+) transport in predominantly right-side-out vesicles were nearly equivalent to those measured in largely inside-out vesicles.
View Article and Find Full Text PDFProtein modification and peptide analysis are important techniques for the elucidation of the structure and function of enzymes. We describe a new technique for the identification of peptides covalently modified with the maleimide cross-linker o-phenylenebismaleimide (OPBM). The method can identify labeled peptides without the use of sophisticated instrumentation or radioactive markers and takes advantage of the separating power of RPLC and of the sensitivity of immunoblotting.
View Article and Find Full Text PDFThe epsilon subunit of the chloroplast ATP synthase is an inhibitor of activity of the enzyme. Recombinant forms of the epsilon subunit from spinach chloroplasts lacking the last 10, 32, or 45 amino acids were immobilized onto activated Sepharose. A polyclonal antiserum raised against the epsilon subunit was passed over these immobilized protein columns, and the purified antibodies which were not bound recognized the portions of the epsilon subunit missing from the recombinant form present on the column.
View Article and Find Full Text PDFPain threshold was assessed via tail flick latency in streptozotocin diabetic rats following a 1-month period of either good or poor diabetic control. Additionally, tail flick latencies were determined under test conditions of euglycemia (60-120 mg/dl) and hyperglycemia (greater than 250 mg/dl) for both groups of diabetic rats. Conditions of hyperglycemia resulted in a significant decrease in tail flick latency in diabetic animals maintained in good as well as poor diabetic control.
View Article and Find Full Text PDFInsulin-dependent diabetes mellitus (IDDM) is associated with several complications, including painful diabetic neuropathy. Both animal and human investigations suggest an altered pain response in IDDM. Furthermore, it has been suggested that glucose may be an important mediating factor in these painful symptoms.
View Article and Find Full Text PDF