Several prominent public health hazards [29] that occurred at the beginning of this century due to adverse drug events (ADEs) have raised international awareness of governments and industries about pharmacovigilance (PhV) [6,7], the science and activities to monitor and prevent adverse events caused by pharmaceutical products after they are introduced to the market. A major data source for PhV is large-scale longitudinal observational databases (LODs) [6] such as electronic health records (EHRs) and medical insurance claim databases. Inspired by the Self-Controlled Case Series (SCCS) model [27], arguably the leading method for ADE discovery from LODs, we propose baseline regularization, a regularized generalized linear model that leverages the diverse health profiles available in LODs across different at different .
View Article and Find Full Text PDF