Studies directed at developing a broadly acting non-nucleoside inhibitor of HCV NS5B led to the discovery of a novel structural class of 5-aryl benzofurans that simultaneously interact with both the palm I and palm II binding regions. An initial candidate was potent in vitro against HCV GT1a and GT1b replicons, and induced multi-log reductions in HCV viral load when orally dosed to chronic GT1 infected chimpanzees. However, in vitro potency losses against clinically relevant GT1a variants prompted a further effort to develop compounds with sustained potency across a broader array of HCV genotypes and mutants.
View Article and Find Full Text PDFHerein, we describe our research efforts to develop unique cores in molecules which function as HCV nonstructural protein 5A (NS5A) inhibitors. In particular, various fused tetracyclic cores were identified which showed genotype and mutant activities comparable to the indole-based tetracyclic core.
View Article and Find Full Text PDFDescribed here are synthesis and biological evaluations of diversified groups of over 57 ertapenem prodrugs which include alkyl, methylenedioxy, carbonate, cyclic carbonate, carbamate esters, and esters containing active transport groups (e.g., carboxyl, amino acid, fatty acids, cholesterol) and macrocyclic lactones linking the two carboxyl groups.
View Article and Find Full Text PDFThe NS5A protein plays a critical role in the replication of HCV and has been the focus of numerous research efforts over the past few years. NS5A inhibitors have shown impressive in vitro potency profiles in HCV replicon assays, making them attractive components for inclusion in all oral combination regimens. Early work in the NS5A arena led to the discovery of our first clinical candidate, MK-4882 [2-((S)-pyrrolidin-2-yl)-5-(2-(4-(5-((S)-pyrrolidin-2-yl)-1H-imidazol-2-yl)phenyl)benzofuran-5-yl)-1H-imidazole].
View Article and Find Full Text PDFComplement C1s protease inhibitors have potential utility in the treatment of diseases associated with activation of the classical complement pathway such as humorally mediated graft rejection, ischemia-reperfusion injury (IRI), vascular leak syndrome, and acute respiratory distress syndrome (ARDS). The utility of biphenylsulfonyl-thiophene-carboxamidine small-molecule C1s inhibitors are limited by their poor in vivo pharmacokinetic properties. Pegylation of a potent analog has provided compounds with good potency and good in vivo pharmacokinetic properties.
View Article and Find Full Text PDFPolycythemia Vera (PV) is a myeloproliferative disorder (MPD) that is commonly characterized by mutant JAK2 (JAK2V617F) signaling, erythrocyte overproduction, and a propensity for thrombosis, progression to myelofibrosis, or acute leukemia. In this study, JAK2V617F expression by human hematopoietic progenitors promoted erythroid colony formation and erythroid engraftment in a bioluminescent xenogeneic immunocompromised mouse transplantation model. A selective JAK2 inhibitor, TG101348 (300 nM), significantly inhibited JAK2V617F+ progenitor-derived colony formation as well as engraftment (120 mg/kg) in xenogeneic transplantation studies.
View Article and Find Full Text PDFWe report that TG101348, a selective small-molecule inhibitor of JAK2 with an in vitro IC50 of approximately 3 nM, shows therapeutic efficacy in a murine model of myeloproliferative disease induced by the JAK2V617F mutation. In treated animals, there was a statistically significant reduction in hematocrit and leukocyte count, a dose-dependent reduction/elimination of extramedullary hematopoiesis, and, at least in some instances, evidence for attenuation of myelofibrosis. There were no apparent toxicities and no effect on T cell number.
View Article and Find Full Text PDFComplement activation has been implicated in disease states such as hereditary angioedema, ischemia-reperfusion injury, acute respiratory distress syndrome, and acute transplant rejection. Even though the complement cascade provides several protein targets for potential therapeutic intervention only two complement inhibitors have been approved so far for clinical use including anti-C5 antibodies for the treatment of paroxysmal nocturnal hemoglobinuria and purified C1-esterase inhibitor replacement therapy for the control of hereditary angioedema flares. In the present study, optimization of potency and physicochemical properties of a series of thiophene amidine-based C1s inhibitors with potential utility as intravenous agents for the inhibition of the classical pathway of complement is described.
View Article and Find Full Text PDFIn studies aimed toward identifying effective and safe inhibitors of kinase signaling cascades that underlie ischemia/reperfusion (I/R) injury, we synthesized a series of pteridines and pyridopyrazines. The design strategy was inspired by the examination of naturally occurring PI3K inhibitors such as wortmannin and quercetin, and building a pharmacophore-based model used for optimization. Structural modifications led to hybrid molecules which incorporated aminopyrimidine and aminopyridine moieties with ATP mimetic characteristics into the pharmacophore motifs to modulate kinase affinity and selectivity.
View Article and Find Full Text PDFA number of fluorinated 1-aryl-tetrahydrocyclopentapyrazoles were synthesized and their insecticidal activity was evaluated. Some of the fluorinated compounds had significant insecticidal properties.
View Article and Find Full Text PDFThrough structure-based drug design and parallel synthesis, we have discovered a novel series of nonpeptidic phenyl-based thrombin inhibitors using oxyguanidines as guanidine bioisosteres. These compounds have been found to be highly potent, highly selective, and orally bioavailable.
View Article and Find Full Text PDFActivation of the classical pathway of complement has been implicated in disease states such as hereditary angioedema, ischemia-reperfusion injury and acute transplant rejection. The trypsin-like serine protease C1s represents a pivotal upstream point of control in the classical pathway of complement activation and is therefore likely to be a useful target in the therapeutic intervention of these disease states. A series of thiopheneamidine-based inhibitors of C1s has been optimized to give a 70 nM inhibitor that inhibits the classical pathway of complement activation in vitro.
View Article and Find Full Text PDFThe neuropeptides orexin A and B (also known as hypocretins) play an important role in many physiological and behavioral activities. Orexins are ligands of two closely related G-protein-coupled receptors, that are the named orexin 1 and orexin 2 receptors. To clearly identify the minimal ligand sequences required for receptor activation, we synthesized and analyzed different centrally, C- and N-terminally truncated analogues of orexins A and B.
View Article and Find Full Text PDFPyrazole 2a is a novel, potent ligand for insect GABA receptors obtained from housefly head membrane preparations (K(i)=8 nM). It is 500-fold selective against the mammalian receptor (mouse brain preparations). Its specifically tritiated version (2b) was synthesized by reduction of disulfide 10 with NaBH(4) followed by alkylation with [3H(3)]-CH(3)I.
View Article and Find Full Text PDFBioorg Med Chem Lett
April 2003
Although thrombin has been extensively researched with many examples of potent and selective inhibitors, the key characteristics of oral bioavailability and long half-life have been elusive. We report here a novel series non-peptidic phenyl-based, highly potent, highly selective and orally bioavailable thrombin inhibitors using oxyguanidines as guanidine-mimetics.
View Article and Find Full Text PDFThe discovery of novel 5,7-disubstituted[1,6]naphthyridines as potent inhibitors of Spleen Tyrosine Kinase (SYK) is discussed. The SAR reveals the necessity for a 7-aryl group with preference towards para substitution and that this in combination with 5-aminoalkylamino substituents further improved the potency of the compounds. The initial SAR as well as a survey of the other positions is discussed in detail.
View Article and Find Full Text PDFOrexin A and B (also known as hypocretins), two recently discovered neuropeptides, play an important role in food intake, sleep/wake cycle and neuroendocrine functions. Orexins are endogenous ligands of two G-protein-coupled receptors, termed OX1 and OX2. This work presents the first short orexin A and B analogues, orexin A 23-33 and orexin B 18-28, with high affinity (119 +/- 49 and 49 +/- 23 nm) for OX1 receptors expressed on SK-N-MC cells and indicates the importance of the C-terminal part of the orexin peptides for this ligand-receptor interaction.
View Article and Find Full Text PDFA study of the S1 binding of lead 5-methylthiothiophene amidine 3, an inhibitor of urokinase-type plasminogen activator, was undertaken by the introduction of a variety of substituents at the thiophene 5-position. The 5-alkyl substituted and unsubstituted thiophenes were prepared using organolithium chemistry. Heteroatom substituents were introduced at the 5-position using a novel displacement reaction of 5-methylsulfonylthiophenes and the corresponding oxygen or sulfur anions.
View Article and Find Full Text PDFNeuropeptide Y (NPY) is a 36-amino acid neuropeptide that exerts its activity by at least five different receptor subtypes that belong to the family of G-protein-coupled receptors. We isolated an aptamer directed against NPY from a nuclease-resistant RNA library. Mapping experiments with N-terminally, C-terminally, and centrally truncated analogues of NPY revealed that the aptamer recognizes the C terminus of NPY.
View Article and Find Full Text PDF