Publications by authors named "Richard M Moutloali"

Composite polyethersulfone (PES) membranes containing N-aminoethyl piperazine propane sulfonate (AEPPS)-modified graphene oxide (GO) were integrated with either of the two pretreatment processes (activated carbon (AC) adsorption or polyelectrolyte coagulation) to assess their effectiveness in mitigating membrane fouling during the treatment of abattoir wastewater. The AEPPS@GO-modified membranes, as compared to the pristine PES membranes, showed improved hydrophilicity, with water uptake increasing from 72 to 118%, surface porosity increasing from 2.34 to 27%, and pure water flux (PWF) increasing from 235 to 673 L.

View Article and Find Full Text PDF

The presence of metal ions in an aqueous medium is an ongoing challenge throughout the world. Processes employed for metal ion removal are developed continuously with the integration of these processes taking center stage. Herein, an integrated system consisting of flocculation, activated carbon (AC), and an ultrafiltration (UF) membrane was assessed for the removal of multiple metal ions contained in wastewater generated from a university chemistry research laboratory.

View Article and Find Full Text PDF

A series of polyethersulfone membranes containing Ag@HPEI@GO composite was fabricated using non-solvent induced phase separations (NIPS) to mitigate against biofilm causing bacteria and modulate solute rejection. All materials produced and used were fully characterised using a combination of appropriate physicochemical techniques including FTIR, XRD, BET, SEM, AFM. The GO-based fillers exhibited bactericidal activities.

View Article and Find Full Text PDF

Fabrication of the ZSM-22/Polyethersulfone (ZSM-22/PES) membranes as selective salt filters represent a growing membrane technological area in separation with the potential of high economic reward based on its low energy requirements. The incorporation of ZSM-22 zeolite material as additives into the PES polymer matrix has the prospective advantage of combining both the zeolite and polymer features while overcoming the limitations associated with both materials. This work investigated the influence of the nature of the silica precursor on ZSM-22 zeolite hydrothermally synthesised using colloidal (C60) and fumed (C60) silica to Si/Al of 60.

View Article and Find Full Text PDF

A series of Zeolitic imidazole framework-8 (ZIF-8) clusters supported on graphene oxide (ZIF-8@GO) nanocomposites were prepared by varying the ratios of ZIF-8 to GO. The resultant nanocomposites were characterized using various techniques, such as Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), Fourier Transform Infrared (FTIR) and Raman spectroscopy. These nanocomposites were incorporated into the thin film layer during interfacial polymerisation process of m-phenylenediamine (aqueous phase which contained the dispersed nanocomposites) and trimesoyl chloride (TMC, organic phase) at room temperature onto polyethersulfone (PES) ultrafiltration (UF) support membrane.

View Article and Find Full Text PDF

The extraction of valuable target ions through monovalent cation exchange membranes (MCEMs) has been increasingly attracting in modern energy and environmental fields. However, the separation performance of MCEMs in terms of the permselectivity and cation fluxes, is typically restricted by membrane architecture and applied materials. Recently, mussel-inspired surface modification methods have been deployed in new membrane fabrications with special surface characteristics and functions.

View Article and Find Full Text PDF

This paper focuses on an in situ interfacial polymerization modification of polyamide thin film composite membranes with acrylic acid (AA) and zinc oxide (ZnO) nanoparticles. Consequent to this modification, the modified polyamide thin film composite (PA-TFC) membranes exhibited enhanced water permeability and Pb (II) heavy metal rejection. For example, the 0.

View Article and Find Full Text PDF

Engineered nanoparticles are known to boost membrane performance in membrane technology. Hitherto, tunable properties that lead to improved hydrophilicity due to increased surface oxygen functionalities upon oxidation of petrol soot have not been fully exploited in membrane filtration technology. Herein, the integration of oxidized petrol soot nanoparticles (PSN) into polyethersulfone ultrafiltration membranes produced via phase inversion technique for dye removal in wastewater is reported.

View Article and Find Full Text PDF

The zwitterion poly-(maleic anhydride-alt-1-octadecene-3-(dimethylamino)-1-propylamine) (p(MAO-DMPA)) synthesized using a ring-opening reaction was used as a poly(vinylidene fluoride) (PVDF) membrane modifier/additive during phase inversion process. The zwitterion was characterized using proton nuclear magnetic resonance (HNMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Atomic force microscopy (AFM), field emission scanning electron microscope (SEM), FTIR, and contact angle measurements were taken for the membranes.

View Article and Find Full Text PDF

The impact of worldwide water scarcity, further exacerbated by environmental pollution, necessitates the development of effective water treatment membranes. Herein, we report the synthesis and characterization of nanocomposite membranes containing hyperbranched polyethyleneimine (HPEI) stabilized bi-and trimetallic nanoparticles. These membranes were prepared by blending a pre-grafted Polyethersulfone (PES) powder with the Pd@Fe@HPEI and Pd@FeAg@HPEI nanoparticles followed by phase inversion.

View Article and Find Full Text PDF

ZSM-22/polyethersulfone membranes were prepared for salt rejection using modelled brackish water. The membranes were fabricated via direct ZSM-22 incorporation into a polymer matrix, thereby inducing the water permeability, hydrophilicity and fouling resistance of the pristine polyethersulfone (PES) membrane. A ZSM-22 zeolite material with a 60 Si/Al ratio, high crystallinity and needle-like morphologies was produced and effectively used as a nanoadditive in the development of ZSM-22/PES membranes with nominal loadings of 0-0.

View Article and Find Full Text PDF

The rational approach motivated the design of novel antimicrobial silver and silver-copper bimetallic nanoparticles contained within zeolitic imidazolate framework-8 supported on graphene oxide (GO), Ag@ZIF-8@GO, and AgCu@ZIF8@GO. In the resultant composites, ZIF-8 was able to prevent the stacking of GO sheets and also acted as a carrier for the nanoparticles within its cavities. GO, on the other hand, acted as an anchoring support enabling uniform dispersion of the nanocomposites, thus eliminating their aggregation.

View Article and Find Full Text PDF

The silver-zinc oxide (Ag-ZnO) polyamide thin film composite (PA-TFC) membrane was prepared by interfacial polymerization. The Ag-ZnO/PA-TFC membrane was characterized by attenuated total reflectance fourier-transform infrared spectroscopy (ATR-FTIR) for polyamide functional groups and contact angle for surface hydrophilicity. The Ag-ZnO/PA-TFC membrane was further characterized by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) for morphology and surface roughness, respectively.

View Article and Find Full Text PDF

In this work, cobalt-methylimidazolate framework has been used as an adsorbent in the removal of Pb(II) from acid mine drainage in adsorption batch system. X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer-Emmet-Teller and transmission electron microscope were used for structural, morphological, and surface characteristics of cobalt-methylimidazolate framework. The concentration of heavy metal ions in water samples was measured by inductively coupled plasma optical emission spectrometry.

View Article and Find Full Text PDF

Surface electrochemistry of novel monolayer-protected gold nanoparticles (MPCAuNPs) is described. Protecting ligands, (1-sulfanylundec-11-yl)tetraethylene glycol (PEG-OH) and (1-sulfanylundec-11-yl)poly(ethylene glycol)ic acid (PEG-COOH), of three different percent ratios (PEG-COOH:PEG-OH), 1:99 (MPCAuNP-COOH(1%)), 50:50 (MPCAuNP-COOH(50%)), and 99:1 (MPCAuNP-COOH(99%)), were studied. The electron transfer rate constants (k(et)/s(-1)) in organic medium decreased as the concentration of the surface-exposed -COOH group in the protecting monolayer ligand is increased: MPCAuNP-COOH(1%) (approximately 5 s(-1)) > MPCAuNP-COOH(50%) (approximately 4 s(-1)) > MPCAuNP-COOH(99%) (approximately 0.

View Article and Find Full Text PDF

The fabrication of a self-assembled monolayer (SAM) of a cyclopentadienylnickel(II) thiolato Schiff base compound, [Ni(SC(6)H(4)NC(H)C(6)H(4)OCH(2)CH(2)SMe)(eta(5)-C(5)H(5))](2) on a gold electrode is described. Effective electronic communication between the Ni(II) centres and the gold surface was established by electrochemically cycling the Schiff base-doped Au electrode in 0.1M NaOH from -200mV to +600mV.

View Article and Find Full Text PDF

The title compound, [PdBr(C(14)H(21)S(2))] or [PdBr[C(6)H(3)(CH(2)S(i)Pr)(2)-2,6]], exhibits square-planar geometry at the Pd centre, with three atoms of the square plane provided by the rigid thiopincer ligand, i.e. 1,3-bis(thiomethyl)benzene.

View Article and Find Full Text PDF