Publications by authors named "Richard Lampitt"

The Controls Over Mesopelagic Interior Carbon Storage (COMICS) cruise DY086 took place aboard the RRS Discovery in the South Atlantic during November and December, 2017. Physical, chemical, biogeochemical and biological data were collected during three visits to ocean observatory station P3, off the coast of South Georgia, during an austral spring bloom. A diverse range of equipment including CTD-rosette, Acoustic Doppler Current Profiler (ADCP), net deployments, marine snow catchers (MSCs), Stand Alone Pump System (SAPS) and PELAGRA Sediment Traps were used to produce a comprehensive, high-quality dataset.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on detecting small plastic particles in various environmental water samples using Raman spectroscopy, which is a common analysis technique.
  • It investigates six types of plastic particles spiked into different water matrices, including artificial and natural waters from the North Sea and major rivers.
  • The research highlights that detection limits for Raman spectroscopy are affected by factors like the properties of the plastic particles, the composition of the water, and the experimental setup used.
View Article and Find Full Text PDF

The aim of this study was to assess the abundance of microplastics in the gastro-intestinal tracts of three commercially important fish species in the UK, to determine whether catch location, feeding habits and fish size influence the amount of microplastics within fish. Fish were collected from two rivers in the UK: the River Thames and the River Stour (East Anglia). Fish were collected from two sites in the River Thames and one site in the River Stour.

View Article and Find Full Text PDF

Progress to reduce plastic pollution has been painfully slow and the consequent damage to the natural environment and to human health is likely to increase further. This has been because the views and ways of working of four distinct stakeholder communities are not sufficiently well integrated. (1) Scientists, (2) industry, (3) society at large and (4) those making policy and legislation must in future find ways to work together.

View Article and Find Full Text PDF

The traditional separation between primary producers (autotrophs) and consumers (heterotrophs) at the base of the marine food web is being increasingly replaced by the paradigm that mixoplankton, planktonic protists with the nutritional ability to use both phago(hetero)trophy and photo(auto)trophy to access energy are widespread globally. Thus, many 'phytoplankton' eat, while 50% of 'protozooplankton' also perform photosynthesis. Mixotrophy may enhance primary production, biomass transfer to higher trophic levels and the efficiency of the biological pump to sequester atmospheric CO into the deep ocean.

View Article and Find Full Text PDF

Concern over plastic pollution of the marine environment is severe. The mass-imbalance between the plastic litter supplied to and observed in the ocean currently suggests a missing sink. However, here we show that the ocean interior conceals high loads of small-sized plastic debris which can balance and even exceed the estimated plastic inputs into the ocean since 1950.

View Article and Find Full Text PDF

Suspended particles are major organic carbon substrates for heterotrophic microorganisms in the mesopelagic ocean (100-1000 m). Nonetheless, communities associated with these particles have been overlooked compared with sinking particles, the latter generally considered as main carbon transporters to the deep ocean. This study is the first to differentiate prokaryotic communities associated with suspended and sinking particles, collected with a marine snow catcher at four environmentally distinct stations in the Scotia Sea.

View Article and Find Full Text PDF

Understanding the influence of anthropogenic forcing on the marine biosphere is a high priority. Climate change-driven trends need to be accurately assessed and detected in a timely manner. As part of the effort towards detection of long-term trends, a network of ocean observatories and time series stations provide high quality data for a number of key parameters, such as pH, oxygen concentration or primary production (PP).

View Article and Find Full Text PDF

The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site.

View Article and Find Full Text PDF

It has been challenging to establish the mechanisms that link ecosystem functioning to environmental and resource variation, as well as community structure, composition, and compensatory dynamics. A compelling hypothesis of compensatory dynamics, known as "zero-sum" dynamics, is framed in terms of energy resource and demand units, where there is an inverse link between the number of individuals in a community and the mean individual metabolic rate. However, body size energy distributions that are nonuniform suggest a niche advantage at a particular size class, which suggests a limit to which metabolism can explain community structuring.

View Article and Find Full Text PDF

Photosynthesis in the surface ocean produces approximately 100 gigatonnes of organic carbon per year, of which 5 to 15 per cent is exported to the deep ocean. The rate at which the sinking carbon is converted into carbon dioxide by heterotrophic organisms at depth is important in controlling oceanic carbon storage. It remains uncertain, however, to what extent surface ocean carbon supply meets the demand of water-column biota; the discrepancy between known carbon sources and sinks is as much as two orders of magnitude.

View Article and Find Full Text PDF

Marine planktonic organisms that undertake active vertical migrations over their life cycle are important contributors to downward particle flux in the oceans. Acantharia, globally distributed heterotrophic protists that are unique in building skeletons of celestite (strontium sulfate), can produce reproductive cysts covered by a heavy mineral shell that sink rapidly from surface to deep waters. We combined phylogenetic and biogeochemical analyses to explore the ecological and biogeochemical significance of this reproductive strategy.

View Article and Find Full Text PDF

The addition of iron to high-nutrient, low-chlorophyll regions induces phytoplankton blooms that take up carbon. Carbon export from the surface layer and, in particular, the ability of the ocean and sediments to sequester carbon for many years remains, however, poorly quantified. Here we report data from the CROZEX experiment in the Southern Ocean, which was conducted to test the hypothesis that the observed north-south gradient in phytoplankton concentrations in the vicinity of the Crozet Islands is induced by natural iron fertilization that results in enhanced organic carbon flux to the deep ocean.

View Article and Find Full Text PDF