Lung cancer is the leading cause of cancer deaths worldwide. Mutations in the tumour suppressor gene TP53 occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, specifically by promoting alveolar type 1 (AT1) differentiation.
View Article and Find Full Text PDFThe p53 transcription factor drives anti-proliferative gene expression programs in response to diverse stressors, including DNA damage and oncogenic signaling. Here, we seek to uncover new mechanisms through which p53 regulates gene expression using tandem affinity purification/mass spectrometry to identify p53-interacting proteins. This approach identified METTL3, an mA RNA-methyltransferase complex (MTC) constituent, as a p53 interactor.
View Article and Find Full Text PDF