This article contains protocols for determining the conformational stability of a globular protein from either urea or thermal unfolding curves. Circular dichroism is the optical spectroscopic technique most commonly used to monitor protein unfolding. These protocols describe how to analyze data from an unfolding curve to obtain the thermodynamic parameters necessary to calculate conformational stability, and how to determine differences in stability between protein variants.
View Article and Find Full Text PDFOur goal was to gain a better understanding of the contribution of the burial of polar groups and their hydrogen bonds to the conformational stability of proteins. We measured the change in stability, Δ(ΔG), for a series of hydrogen bonding mutants in four proteins: villin headpiece subdomain (VHP) containing 36 residues, a surface protein from Borrelia burgdorferi (VlsE) containing 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa (RNase Sa) and T1 (RNase T1). Crystal structures were determined for three of the hydrogen bonding mutants of RNase Sa: S24A, Y51F, and T95A.
View Article and Find Full Text PDFThis unit contains basic protocols for determining the conformational stability of a globular protein from either urea or thermal unfolding curves. Circular dichroism is the optical spectroscopic technique most commonly used to monitor protein unfolding. The protocols describe how to analyze data from an unfolding curve to obtain the thermodynamic parameters necessary to calculate conformational stability, and how to determine differences in stability between protein variants.
View Article and Find Full Text PDFThe ionizable groups in proteins with the lowest pKs are the carboxyl groups of aspartic acid side-chains. One of the lowest, pK=0.6, is observed for Asp76 in ribonuclease T1.
View Article and Find Full Text PDFWe have used potentiometric titrations to measure the pK values of the ionizable groups of proteins in alanine pentapeptides with appropriately blocked termini. These pentapeptides provide an improved model for the pK values of the ionizable groups in proteins. Our pK values determined in 0.
View Article and Find Full Text PDFJ Cardiothorac Vasc Anesth
December 2005
Objective: The pKa of fentanyl has not been measured previously at varying extremes of body temperature. The goal of this laboratory investigation was to test the hypothesis that the pKa of fentanyl changes with temperature.
Design: The investigation involved measuring the pKa values of aqueous fentanyl at varying temperatures.
The two most buried carboxyl groups in ribonuclease Sa (RNase Sa) are Asp33 (99% buried; pK 2.4) and Asp79 (85% buried; pK 7.4).
View Article and Find Full Text PDFThe primary goal of this study was to gain a better understanding of the effect of environment and ionic strength on the pK values of histidine residues in proteins. The salt-dependence of pK values for two histidine residues in ribonuclease Sa (RNase Sa) (pI=3.5) and a variant in which five acidic amino acids have been changed to lysine (5K) (pI=10.
View Article and Find Full Text PDFThe pK values of the titratable groups in ribonuclease Sa (RNase Sa) (pI=3.5), and a charge-reversed variant with five carboxyl to lysine substitutions, 5K RNase Sa (pI=10.2), have been determined by NMR at 20 degrees C in 0.
View Article and Find Full Text PDF