Absorption spectroscopy probing transitions from shallow-core d and f orbitals in lanthanides and actinides reveals information about bonding and the electronic structure in compounds containing these elements. However, spectroscopy in this photon energy range is challenging because of the limited availability of light sources and extremely short penetration depths. In this work, we address these challenges using a tabletop extreme ultraviolet (XUV), ultrafast, laser-driven, high harmonic generation light source, which generates femtosecond pulses in the 40-140 eV range.
View Article and Find Full Text PDFThe recent commissioning of a movable monochromator at the 34-ID-C endstation of the Advanced Photon Source has vastly simplified the collection of Bragg coherent diffraction imaging (BCDI) data from multiple Bragg peaks of sub-micrometre scale samples. Laue patterns arising from the scattering of a polychromatic beam by arbitrarily oriented nanocrystals permit their crystal orientations to be computed, which are then used for locating and collecting several non-co-linear Bragg reflections. The volumetric six-component strain tensor is then constructed by combining the projected displacement fields that are imaged using each of the measured reflections via iterative phase retrieval algorithms.
View Article and Find Full Text PDFMesoscale imperfections, such as pores and voids, can strongly modify the properties and the mechanical response of materials under extreme conditions. Tracking the material response and microstructure evolution during void collapse is crucial for understanding its performance. In particular, imperfections in the ablator materials, such as voids, can limit the efficiency of the fusion reaction and ultimately hinder ignition.
View Article and Find Full Text PDFInertial confinement fusion (ICF) holds increasing promise as a potential source of abundant, clean energy, but has been impeded by defects such as micro-voids in the ablator layer of the fuel capsules. It is critical to understand how these micro-voids interact with the laser-driven shock waves that compress the fuel pellet. At the Matter in Extreme Conditions (MEC) instrument at the Linac Coherent Light Source (LCLS), we utilized an x-ray pulse train with ns separation, an x-ray microscope, and an ultrafast x-ray imaging (UXI) detector to image shock wave interactions with micro-voids.
View Article and Find Full Text PDFThe impacts of uncertainty in mirror movements in mechanically scanned interference pattern structured illumination imaging (IPSII) are discussed. It is shown that uncertainty in IPSII mirror movements causes errors in both the phase and amplitude of the Fourier transform of the resulting imaging. Finally, we demonstrate that iterative phase retrieval algorithms can improve the quality of IPSII images by correcting the phase errors caused by mirror movement uncertainties.
View Article and Find Full Text PDFWe present a wavelength meter with picometer-scale resolution based on etaloning effects of inexpensive glass slides and the built-in color filters of a consumer grade CMOS camera. After calibrating the device to a commercial meter, we tested the device's calibration stability using two tunable visible lasers for a period of over 16 days. The wavelength error over that entire period has a standard deviation of 5.
View Article and Find Full Text PDFWe introduce a variation on the cross-correlation frequency-resolved optical gating (XFROG) technique that uses a near-infrared (NIR) nonlinear-optical signal to characterize pulses in the ultraviolet (UV). Using a transient-grating XFROG beam geometry, we create a grating using two copies of the unknown UV pulse and diffract a NIR reference pulse from it. We show that, by varying the delay between the UV pulses creating the grating, the UV pulse intensity-and-phase information can be encoded into a NIR signal.
View Article and Find Full Text PDFMeasurement modalities in Bragg coherent diffraction imaging (BCDI) rely on finding a signal from a single nanoscale crystal object which satisfies the Bragg condition among a large number of arbitrarily oriented nanocrystals. However, even when the signal from a single Bragg reflection with (hkl) Miller indices is found, the crystallographic axes on the retrieved three-dimensional (3D) image of the crystal remain unknown, and thus localizing in reciprocal space other Bragg reflections becomes time-consuming or requires good knowledge of the orientation of the crystal. Here, the commissioning of a movable double-bounce Si (111) monochromator at the 34-ID-C endstation of the Advanced Photon Source is reported, which aims at delivering multi-reflection BCDI as a standard tool in a single beamline instrument.
View Article and Find Full Text PDFA new visualization tool, Cinema:Bandit, and its demonstration with a continuous workflow for analyzing shock physics experiments and visually exploring the data in real time at X-ray light sources is presented. Cinema:Bandit is an open-source, web-based visualization application in which the experimenter may explore an aggregated dataset to inform real-time beamline decisions and enable post hoc data analysis. The tool integrates with experimental workflows that process raw detector data into a simple database format, and it allows visualization of disparate data types, including experimental parameters, line graphs, and images.
View Article and Find Full Text PDFThe nucleation and propagation of dislocations is an ubiquitous process that accompanies the plastic deformation of materials. Consequently, following the first visualization of dislocations over 50 years ago with the advent of the first transmission electron microscopes, significant effort has been invested in tailoring material response through defect engineering and control. To accomplish this more effectively, the ability to identify and characterize defect structure and strain following external stimulus is vital.
View Article and Find Full Text PDFDuring carrier multiplication (CM), also known as multiexciton generation (MEG), absorption of a single photon produces multiple electron-hole pairs, or excitons. This process can appreciably increase the efficiency of photoconversion, which is especially beneficial in photocatalysis and photovoltaics. This Account reviews recent progress in understanding the CM process in semiconductor nanocrystals (NCs), motivated by the challenge researchers face to quickly identify candidate nanomaterials with enhanced CM.
View Article and Find Full Text PDFNanomaterials with efficient carrier multiplication (CM), that is, generation of multiple electron-hole pairs by single photons, have been the object of intense scientific interest as potential enablers of high efficiency generation-III photovoltaics. In this work, we explore nanocrystal shape control as a means for enhancing CM. Specifically, we investigate the influence of aspect ratio (ρ) of PbSe nanorods (NRs) on both CM and the inverse of this process, Auger recombination.
View Article and Find Full Text PDFCarrier multiplication (CM) is the process in which absorption of a single photon produces multiple electron-hole pairs. Here, we evaluate the effect of particle shape on CM efficiency by conducting a comparative study of spherical nanocrystal quantum dots (NQDs) and elongated nanorods (NRs) of PbSe using a time-resolved technique that is based on photon counting in the infrared using a superconducting nanowire single-photon photodetector (SNSPD). Due to its high sensitivity and low noise levels, this technique allows for accurate determination of CM yields, even with the small excitation intensities required for quantitative measurements, and the fairly low emission quantum yields of elongated NR samples.
View Article and Find Full Text PDFThe ability to determine the structure of matter in three dimensions has profoundly advanced our understanding of nature. Traditionally, the most widely used schemes for three-dimensional (3D) structure determination of an object are implemented by acquiring multiple measurements over various sample orientations, as in the case of crystallography and tomography, or by scanning a series of thin sections through the sample, as in confocal microscopy. Here we present a 3D imaging modality, termed ankylography (derived from the Greek words ankylos meaning 'curved' and graphein meaning 'writing'), which under certain circumstances enables complete 3D structure determination from a single exposure using a monochromatic incident beam.
View Article and Find Full Text PDFWe review recent experimental and theoretical work on the use of counterpropagating light to enhance high-order harmonic generation through all-optical quasi-phase matching. Also presented is a new technique for measuring the coherence of high harmonics in the nonlinear medium. This information is crucial for understanding the process of harmonic generation over extended distances, as well as for effective enhancement using quasi-phase matching techniques.
View Article and Find Full Text PDFLight microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to approximately 200 nm. By using imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens with techniques such as near-field scanning optical microscopy, stimulated emission depletion microscopy, and photoactivated localization microscopy.
View Article and Find Full Text PDFWe present the first experimental demonstration of lensless diffractive imaging using coherent soft x rays generated by a tabletop soft-x-ray source. A 29 nm high harmonic beam illuminates an object, and the subsequent diffraction is collected on an x-ray CCD camera. High dynamic range diffraction patterns are obtained by taking multiple exposures while blocking small-angle diffraction using beam blocks of varying size.
View Article and Find Full Text PDF