Publications by authors named "Richard L Kurtz"

Environmentally persistent free radicals (EPFRs) are a class of toxic air pollutants that are found to form by the chemisorption of substituted aromatic molecules on the surface of metal oxides. In this study, we employ X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) to perform a temperature-dependent study of phenol adsorption on -FeO(0001) to probe the radical formation mechanism by monitoring changes in the electronic structure of both the adsorbed phenol and metal oxide substrate. Upon dosing at room temperature, new phenol-derived electronic states have been clearly observed in the UPS spectrum at saturation coverage.

View Article and Find Full Text PDF

Pt-Pd bimetallic nanoparticles were synthesized on TiO support on the planar substrate as well as on high surface area SiO gel by atomic layer deposition to identify the catalytic performance improvement after the formation of Pt-Pd bimetallic nanoparticles by surface analysis techniques. From X-ray absorption near edge spectra of Pt-Pd bimetallic nanoparticles, d-orbital hybridization between Pt 5d and Pd 4d was observed, which is responsible for charge transfer from Pt to Pd. Moreover, it was found from the in situ grazing incidence X-ray absorption spectroscopy study that Pt-Pd nanoparticles have a Pd shell/Pt core structure with CO adsorption.

View Article and Find Full Text PDF

Environmentally persistent free radicals (EPFRs) are toxic organic/metal oxide composite particles that have been discovered to form from substituted benzenes chemisorbed to metal oxides. Here, we perform photoelectron spectroscopy, electron energy loss spectroscopy, and low energy electron diffraction of phenol chemisorbed to ZnO(1 0 1̱ 0) and (0 0 0 1̱)-Zn to observe electronic structure changes and charge transfer as a function adsorption temperature. We show direct evidence of charge transfer from the ZnO surfaces to the phenol.

View Article and Find Full Text PDF

Environmentally persistent free radicals (EPFRs) are a class of composite organic/metal oxide pollutants that have recently been discovered to form from a wide variety of substituted benzenes chemisorbed to commonly encountered oxides. Although a qualitative understanding of EPFR formation on particulate metal oxides has been achieved, a detailed understanding of the charge transfer mechanism that must accompany the creation of an unpaired radical electron is lacking. In this study, we perform photoelectron spectroscopy and electron energy loss spectroscopy on a well-defined model system-phenol chemisorbed on TiO2(110) to directly observe changes in the electronic structure of the oxide and chemisorbed phenol as a function of adsorption temperature.

View Article and Find Full Text PDF

We have examined the formation of environmentally persistent free radicals (EPFRs) from phenol over alumina and titania using both powder and single-crystal samples. Electron paramagnetic resonance (EPR) studies of phenol adsorbed on metal oxide powders indicates radical formation on both titania and alumina, with both oxides forming one faster-decaying species (lifetime on the order of 50-100 hours) and one slower-decayng species (lifetimes on the order of 1000 hours or more). Electron energy loss spectroscopy (EELS) measurements comparing physisorbed phenol on single-crystal TiO(110) to phenoxyl radicals on the same substrate indicate distinct changes in the π-π* transitions from phenol after radical formation.

View Article and Find Full Text PDF

The Fermi surface of tetragonally distorted fcc Co films grown on Cu(001) has been investigated with first-principles calculations and compared with an experimental determination using angle-resolved photoemission. The angular distributions for hnu=21-45 eV are dominated by the structure of the final states rather than by the shape of the Fermi surface. Theoretical estimates of the photoemission matrix elements support this observation.

View Article and Find Full Text PDF

Human atherosclerotic plaques in both native and bypass arteries have been visualized using microtomography to provide additional information on the nature of coronary artery disease. Plaques contained within arteries removed from three white males aged 51, 55 and 70 are imaged in three-dimensions with monochromatic synchrotron x-ray radiation. Fields of view are 658 x 658 x 517 voxels.

View Article and Find Full Text PDF