Publications by authors named "Richard L Boyd"

Purpose: Current monoclonal antibody-based treatment approaches for cutaneous T cell lymphoma (CTCL) rely heavily on the ability to identify a tumor specific target that is essentially absent on normal cells. Herein, we propose tumor associated glycoprotein-72 (TAG-72) as one such target. TAG-72 is a mucin-associated, truncated O-glycan that has been identified as a chimeric antigen receptor (CAR)-T cell target in solid tumor indications.

View Article and Find Full Text PDF

The lymph node (LN) is home to resident macrophage populations that are essential for immune function and homeostasis, but key factors controlling this niche are undefined. Here, we show that fibroblastic reticular cells (FRCs) are an essential component of the LN macrophage niche. Genetic ablation of FRCs caused rapid loss of macrophages and monocytes from LNs across two in vivo models.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T therapy has demonstrated remarkable outcomes for B cell malignancies, however, its application for T cell lymphoma, particularly cutaneous T cell lymphoma (CTCL), has been limited. Barriers to effective CAR-T cell therapy in treating CTCL include T cell aplasia in autologous transplants, CAR-T product contamination with leukemic T cells, CAR-T fratricide (when the target antigen is present on normal T cells), and tumor heterogeneity. To address these critical challenges, innovative CAR engineering by targeting multiple antigens to strike a balance between efficacy and safety of the therapy is necessary.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR-) T cells are revolutionizing cancer treatment, as a direct result of their clinical impact on the treatment of hematological malignancies. However for solid tumors, CAR-T cell therapeutic efficacy remains limited, primarily due to the complex immunosuppressive tumor microenvironment, inefficient access to tumor cells and poor persistence of the killer cells. In this in vitro study, an injectable, gelatin-based micro-hydrogel system that can encapsulate and deliver effective CAR-T therapy is investigated.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells have revolutionized blood cancer immunotherapy; however, their efficacy against solid tumors has been limited. A common mechanism of tumor escape from single target therapies is downregulation or mutational loss of the nominal epitope. Targeting multiple antigens may thus improve the effectiveness of CAR immunotherapies.

View Article and Find Full Text PDF

In this issue of Cell Stem Cell, Xu et al. (2019) demonstrate that editing iPSCs' major histocompatibility antigens may potentially provide a small set of universally compatible stem cell lines for therapies. However, these modifications may result in patient minor histocompatibility responses and deficiencies in their T cell response repertoire to infection and cancer.

View Article and Find Full Text PDF

In the thymus, hematopoietic progenitors commit to the T cell lineage and undergo sequential differentiation to generate diverse T cell subsets, including major histocompatibility complex (MHC)-restricted αβ T cell receptor (TCR) T cells and non-MHC-restricted γδ TCR T cells. The factors controlling precursor commitment and their subsequent maturation and specification into αβ TCR versus γδ TCR T cells remain unclear. Here, we show that the tyrosine phosphatase PTPN2 attenuates STAT5 (signal transducer and activator of transcription 5) signaling to regulate T cell lineage commitment and SRC family kinase LCK and STAT5 signaling to regulate αβ TCR versus γδ TCR T cell development.

View Article and Find Full Text PDF

Graft-versus-host disease (GVHD) and posttransplant immunodeficiency are frequently related complications of allogeneic hematopoietic transplantation. Alloreactive donor T cells can damage thymic epithelium, thus limiting new T-cell development. Although the thymus has a remarkable capacity to regenerate after injury, endogenous thymic regeneration is impaired in GVHD.

View Article and Find Full Text PDF

Although forkhead-box n1 (Foxn1) is a critical thymic epithelial cell regulator in thymus organogenesis, its association with epithelial differentiation and homeostasis in the postnatal and aged thymic microenvironment remains conflicting. Consequently, we have generated a Foxn1 knock-in mouse model that allows for refined investigation of the aging thymic epithelium. This reporter line differs from those previously published in that concomitant expression of enhanced green fluorescent protein enables live cell sorting of Foxn1 cell populations.

View Article and Find Full Text PDF

Light triggered release of an antibiotic from a click crosslinked hydrogel was developed by conjugating ciprofloxacin through a photo-cleavable linker to the hydrogel network structure. Upon irradiation of the hydrogel material with UV light (365 nm) at low intensity, native ciprofloxacin was released into the surrounding environment and could be detected by HPLC. The antimicrobial activity of the released compound on Staphylococcus aureus was demonstrated.

View Article and Find Full Text PDF

In this study, we present a method for the fabrication of in situ forming gelatin and poly(ethylene glycol)-based hydrogels utilizing bioorthogonal, strain-promoted alkyne-azide cycloaddition as the cross-linking reaction. By incorporating nitrobenzyl moieties within the network structure, these hydrogels can be designed to be degradable upon irradiation with low intensity UV light, allowing precise photopatterning. Fibroblast cells encapsulated within these hydrogels were viable at 14 days and could be readily harvested using a light trigger.

View Article and Find Full Text PDF

Mechanisms underlying age-related defects within lymphoid-lineages remain poorly understood. We previously reported that sex steroid ablation (SSA) induced lymphoid rejuvenation and enhanced recovery from hematopoietic stem cell (HSC) transplantation (HSCT). We herein show that, mechanistically, SSA induces hematopoietic and lymphoid recovery by functionally enhancing both HSC self-renewal and propensity for lymphoid differentiation through intrinsic molecular changes.

View Article and Find Full Text PDF

Paradoxical to its importance for generating a diverse T cell repertoire, thymic function progressively declines throughout life. This process has been at least partially attributed to the effects of sex steroids, and their removal promotes enhanced thymopoiesis and recovery from immune injury. We show that one mechanism by which sex steroids influence thymopoiesis is through direct inhibition in cortical thymic epithelial cells (cTECs) of Delta-like 4 (Dll4), a Notch ligand crucial for the commitment and differentiation of T cell progenitors in a dose-dependent manner.

View Article and Find Full Text PDF
Article Synopsis
  • Thymic epithelial cells (TECs) are essential for the development of T cells and maintaining self-tolerance, but they decline with age.
  • Researchers identified a specific group of immature thymic epithelial progenitors (TEPCs) in adult thymus, which possess stem/progenitor-like capabilities and can develop into mature TEC lineages.
  • These adult TEPCs are mostly inactive in the body but can form colonies and self-renew in lab conditions, and they retain their ability to differentiate in a supportive thymic environment, providing insights into TEC biology and potential therapeutic approaches for aging and regeneration.
View Article and Find Full Text PDF

Sepsis is an aggressive inflammatory syndrome and a global health burden estimated to kill 7.3 million people annually. Single-target molecular therapies have not addressed the multiple disease pathways triggered by septic injury.

View Article and Find Full Text PDF

Thymic epithelial cells (TECs) play a critical role in T cell maturation and tolerance induction. The generation of TECs from in vitro differentiation of human pluripotent stem cells (PSCs) provides a platform on which to study the mechanisms of this interaction and has implications for immune reconstitution. To facilitate analysis of PSC-derived TECs, we generated hESC reporter lines in which sequences encoding GFP were targeted to FOXN1, a gene required for TEC development.

View Article and Find Full Text PDF

Multipotent mesenchymal stromal cells (MSCs) possess reparative and immunoregulatory properties, making them attractive candidates for cellular therapy. However, the majority of MSCs administered i.v.

View Article and Find Full Text PDF

Two papers in this issue of Cell Stem Cell have made a significant advance in solving one of the great challenges of modern immunology-resurrecting thymus function through the induction of thymus epithelial cells (TECs) by directed differentiation of human embryonic stem cells (hESCs).

View Article and Find Full Text PDF

Background: People with Down syndrome (DS) are more susceptible to infections and autoimmune disease, but the molecular genetic basis for these immune defects remains undetermined. In this study, we tested whether increased expression of the chromosome 21 gene RCAN1 contributes to immune dysregulation.

Methods: We investigated the immune phenotype of a mouse model that overexpresses RCAN1.

View Article and Find Full Text PDF

Loss of tolerance to neutrophil myeloperoxidase (MPO) underlies the development of ANCA-associated vasculitis and GN, but the mechanisms underlying this loss of tolerance are poorly understood. Here, we assessed the role of the thymus in deletion of autoreactive anti-MPO T cells and the importance of peripheral regulatory T cells in maintaining tolerance to MPO and protecting from GN. Thymic expression of MPO mRNA predominantly localized to medullary thymic epithelial cells.

View Article and Find Full Text PDF

The atypical chemokine receptor CCX-CKR regulates bioavailability of CCL19, CCL21, and CCL25, homeostatic chemokines that play crucial roles in thymic lymphopoiesis. Deletion of CCX-CKR results in accelerated experimental autoimmunity induced by immunization. Here we show that CCX-CKR deletion also increases incidence of a spontaneous Sjögren's syndrome-like pathology, characterized by lymphocytic infiltrates in salivary glands and liver of CCX-CKR(-/-) mice, suggestive of a defect in self-tolerance when CCX-CKR is deleted.

View Article and Find Full Text PDF

The reproducible isolation and accurate characterization of thymic epithelial cell (TEC) subsets is of critical importance to the ongoing study of thymopoiesis and its functional decline with age. The study of adult TEC, however, is significantly hampered due to the severely low stromal to hematopoietic cell ratio. Non-biased digestion and enrichment protocols are thus essential to ensure optimal cell yield and accurate representation of stromal subsets, as close as possible to their in vivo representation.

View Article and Find Full Text PDF

Recent evidence suggests that the decline in resistance to viral infections with age occurs predominantly as a result of a gradual loss of naïve antigen-specific T cells. As such, restoration of the naïve T cell repertoire to levels seen in young healthy adults may improve defence against infection in the aged. We have previously shown that sex steroid ablation (SSA) rejuvenates the ageing thymus and increases thymic export of naïve T cells, but it remains unclear whether T cell responses are improved.

View Article and Find Full Text PDF

Endogenous thymic regeneration is a crucial function that allows for renewal of immune competence after stress, infection, or immunodepletion. However, the mechanisms governing this regeneration remain poorly understood. We detail such a mechanism, centered on interleukin-22 (IL-22) and triggered by the depletion of CD4(+)CD8(+) double-positive thymocytes.

View Article and Find Full Text PDF

Tolerance induction, and thus prevention of autoimmunity, is linked with the amount of self-antigen presented on thymic stroma. We describe that intrathymic (i.t.

View Article and Find Full Text PDF