Gestational growth and development of bone is an understudied process compared to soft tissues and has implications for lifelong health. This study investigated growth and development of human fetal limb bone trabecular architecture using 3D digital histomorphometry of microcomputed tomography data from the femora and humeri of 35 skeletons (17 female and 18 male) with gestational ages between 4 and 9 months. Ontogenetic data revealed: (i) fetal trabecular architecture is similar between sexes; (ii) the proximal femoral metaphysis is physically larger, with thicker trabeculae and greater bone volume fraction relative to the humerus, but other aspects of trabecular architecture are similar between the bones; (iii) between 4 and 9 months gestation there is no apparent sexual or limb dimorphism in patterns of growth, but the size of the humerus and femur diverges early in development.
View Article and Find Full Text PDFBone mechanics is well understood at every length scale except the nano-level. We aimed to investigate the relationship between bone nanoscale and tissue-level mechanics experimentally. We tested two hypotheses: (1) nanoscale strains were lower in hip fracture patients versus controls, and (2) nanoscale mineral and fibril strains were inversely correlated with aging and fracture.
View Article and Find Full Text PDFMeasurement of the properties of bone as a material can happen in various length scales in its hierarchical and composite structure. The aim of this study was to test the tissue level properties of clinically-relevant human bone samples which were collected from donors belonging to three groups: ageing donors who suffered no fractures (Control); untreated fracture patients (Fx-Untreated) and patient who experienced hip fracture despite being treated with bisphosphonates (Fx-BisTreated). Tissue level properties were assessed by (a) nanoindentation and (b) synchrotron tensile tests (STT) where strains were measured at the 'tissue', 'fibril' and 'mineral' levels by using simultaneous Wide-angle - (WAXD) and Small angle- X-ray diffraction (SAXD).
View Article and Find Full Text PDFTher Adv Musculoskelet Dis
March 2022
The growing burden from osteoporosis and fragility fractures highlights a need to improve osteoporosis management across healthcare systems. Sub-optimal management of osteoporosis is an area suitable for digital health interventions. While fracture liaison services (FLSs) are proven to greatly improve care for people with osteoporosis, such services might benefit from technologies that enhance automation.
View Article and Find Full Text PDFOsteoporosis causes bones to become weak, porous and fracture more easily. While a vertebral fracture is the archetypal fracture of osteoporosis, it is also the most difficult to diagnose clinically. Patients often suffer further spine or other fractures, deformity, height loss and pain before diagnosis.
View Article and Find Full Text PDFCurr Osteoporos Rep
June 2021
Purpose Of Review: Bone matrix exhibits great complexity in its composition, structure and mechanics. Here, we provide a review of recent research articles and appraise the evidence that bone matrix quality is clinically important and possibly targetable for fracture prevention.
Recent Findings: Deformation of mineralised collagen fibrils determines bone fracture mechanics.
Nanoscale mineralized collagen fibrils may be important determinants of whole-bone mechanical properties and contribute to the risk of age-related fractures. In a cross-sectional study nano- and tissue-level mechanics were compared across trabecular sections from the proximal femora of three groups (n = 10 each): ageing non-fractured donors (Controls); untreated fracture patients (Fx-Untreated); bisphosphonate-treated fracture patients (Fx-BisTreated). Collagen fibril, mineral and tissue mechanics were measured using synchrotron X-Ray diffraction of bone sections under load.
View Article and Find Full Text PDFThe cortex of the femoral neck is a key structural element of the human body, yet there is not a reliable metric for predicting the mechanical properties of the bone in this critical region. This study explored the use of a range of non-destructive metrics to measure femoral neck cortical bone stiffness at the millimetre length scale. A range of testing methods and imaging techniques were assessed for their ability to measure or predict the mechanical properties of cortical bone samples obtained from the femoral neck of hip replacement patients.
View Article and Find Full Text PDFObjectives: Bone material properties are a major determinant of bone health in older age, both in terms of fracture risk and implant fixation, in orthopaedics and dentistry. Bone is an anisotropic and hierarchical material so its measured material properties depend upon the scale of metric used. The scale used should reflect the clinical problem, whether it is fracture risk, a whole bone problem, or implant stability, at the millimetre-scale.
View Article and Find Full Text PDFPurpose: Cerebrospinal fluid pressure (CSFp) changes are involved or implicated in various ocular conditions including glaucoma, idiopathic intracranial hypertension, and visual impairment and intracranial pressure syndrome. However, little is known about the effects of CSFp on lamina cribrosa and retrolaminar neural tissue (RLNT) biomechanics, potentially important in these conditions. Our goal was to use an experimental approach to visualize and quantify the deformation of these tissues as CSFp increased.
View Article and Find Full Text PDFOsteoporosis is characterised by trabecular bone loss resulting from increased osteoclast activation and unbalanced coupling between resorption and formation, which induces a thinning of trabeculae and trabecular perforations. Bisphosphonates are the frontline therapy for osteoporosis, which act by reducing bone remodelling, and are thought to prevent perforations and maintain microstructure. However, bisphosphonates may oversuppress remodelling resulting in accumulation of microcracks.
View Article and Find Full Text PDFFishes have several means of moving water to effect odorant transport to their olfactory epithelium ('olfactory flow'). Here we show that olfactory flow in the adult garpike Belone belone (Belonidae, Teleostei), a fish with an unusual nasal region, can be generated by its motion relative to water (swimming, or an external current, or both). We also show how the unusual features of the garpike's nasal region influence olfactory flow.
View Article and Find Full Text PDFPurpose: Scleral stiffening has been proposed as a treatment for glaucoma to protect the lamina cribrosa (LC) from excessive intraocular pressure-induced deformation. Here we experimentally evaluated the effects of moderate stiffening of the peripapillary sclera on the deformation of the LC.
Methods: An annular sponge, saturated with 1.
The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution.
View Article and Find Full Text PDFBackground: Luteinising hormone-releasing hormone agonists (LHRHa), used as androgen deprivation therapy (ADT) in prostate cancer (PCa) management, reduce serum oestradiol as well as testosterone, causing bone mineral density (BMD) loss. Transdermal oestradiol is a potential alternative to LHRHa.
Objective: To compare BMD change in men receiving either LHRHa or oestradiol patches (OP).
The lamina cribrosa (LC) is a complex mesh-like tissue in the posterior eye. Its biomechanical environment is thought to play a major role in glaucoma, the second most common cause of blindness. Due to its small size and relative inaccessibility, high-resolution measurements of LC deformation, important in characterizing LC biomechanics, are challenging.
View Article and Find Full Text PDFIntroduction: Prostate cancer is a large clinical burden across Europe. It is, in fact, the most common cancer in males, accounting for more than 92,300 deaths annually throughout the continent. Prostate cancer is androgen-sensitive; thus an androgen deprivation therapy (ADT) is often used for treatment by reducing androgen to castrate levels.
View Article and Find Full Text PDFEarly bone development may have a significant impact upon bone health in adulthood. Bone mineral density (BMD) and bone mass are important determinants of adult bone strength. However, several studies have shown that BMD and bone mass decrease after birth.
View Article and Find Full Text PDFThe lamina cribrosa (LC) is a tissue in the posterior eye with a complex trabecular microstructure. This tissue is of great research interest, as it is likely the initial site of retinal ganglion cell axonal damage in glaucoma. Unfortunately, the LC is difficult to access experimentally, and thus imaging techniques in tandem with image processing have emerged as powerful tools to study the microstructure and biomechanics of this tissue.
View Article and Find Full Text PDFExtinct animal behavior has often been inferred from qualitative assessments of relative brain region size in fossil endocranial casts. For instance, flight capability in pterosaurs and early birds has been inferred from the relative size of the cerebellar flocculus, which in life protrudes from the lateral surface of the cerebellum. A primary role of the flocculus is to integrate sensory information about head rotation and translation to stabilize visual gaze via the vestibulo-occular reflex (VOR).
View Article and Find Full Text PDFHolocephalans (chimaeras) are a group of marine fishes comprising three families: the Callorhinchidae (callorhinchid fishes), the Rhinochimaeridae (rhinochimaerid fishes) and the Chimaeridae (chimaerid fishes). We have used X-ray microcomputed tomography and magnetic resonance imaging to characterise in detail the nasal anatomy of three species of chimaerid fishes: Chimaera monstrosa, C. phantasma and Hydrolagus colliei.
View Article and Find Full Text PDFWe demonstrate how micro-computed tomography (micro-CT) can be a powerful tool for describing internal and external morphological changes in Calliphora vicina (Diptera: Calliphoridae) during metamorphosis. Pupae were sampled during the 1st, 2nd, 3rd and 4th quarter of development after the onset of pupariation at 23 °C, and placed directly into 80% ethanol for preservation. In order to find the optimal contrast, four batches of pupae were treated differently: batch one was stained in 0.
View Article and Find Full Text PDFIt is widely accepted that during postnatal development trabecular bone adapts to the prevailing loading environment via modelling. However, very little is known about the mechanisms (whether it is predominantly modelling or remodelling) or controls (such as whether loading influences development) of fetal bone growth. In order to make inferences about these factors, we assessed the pattern of fetal trabecular development in the humerus and femur via histomorphometric parameter quantification.
View Article and Find Full Text PDFFrom high-resolution (65 μm) data acquired by magnetic resonance imaging, we have reconstructed the nasal passageway of a single adult hagfish specimen (probably Eptatretus stoutii). We have used this reconstruction to investigate how the anatomy and morphometry of the nasal passageway influence the olfactory ability of the hagfish. We found that the long, broad section of the passageway preceding the nasal chamber will delay the response to an odor by 1-2 s.
View Article and Find Full Text PDF