We develop a framework for learning properties of quantum states beyond the assumption of independent and identically distributed (i.i.d.
View Article and Find Full Text PDFFinding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n-qubit gapped local Hamiltonian after learning from only [Formula: see text] data about other Hamiltonians in the same quantum phase of matter.
View Article and Find Full Text PDFClassical machine learning (ML) provides a potentially powerful approach to solving challenging quantum many-body problems in physics and chemistry. However, the advantages of ML over traditional methods have not been firmly established. In this work, we prove that classical ML algorithms can efficiently predict ground-state properties of gapped Hamiltonians after learning from other Hamiltonians in the same quantum phase of matter.
View Article and Find Full Text PDFQuantum technology promises to revolutionize how we learn about the physical world. An experiment that processes quantum data with a quantum computer could have substantial advantages over conventional experiments in which quantum states are measured and outcomes are processed with a classical computer. We proved that quantum machines could learn from exponentially fewer experiments than the number required by conventional experiments.
View Article and Find Full Text PDFWe consider the problem of jointly estimating expectation values of many Pauli observables, a crucial subroutine in variational quantum algorithms. Starting with randomized measurements, we propose an efficient derandomization procedure that iteratively replaces random single-qubit measurements by fixed Pauli measurements; the resulting deterministic measurement procedure is guaranteed to perform at least as well as the randomized one. In particular, for estimating any L low-weight Pauli observables, a deterministic measurement on only of order log(L) copies of a quantum state suffices.
View Article and Find Full Text PDFWe study the performance of classical and quantum machine learning (ML) models in predicting outcomes of physical experiments. The experiments depend on an input parameter x and involve execution of a (possibly unknown) quantum process E. Our figure of merit is the number of runs of E required to achieve a desired prediction performance.
View Article and Find Full Text PDFWe propose a method for detecting bipartite entanglement in a many-body mixed state based on estimating moments of the partially transposed density matrix. The estimates are obtained by performing local random measurements on the state, followed by postprocessing using the classical shadows framework. Our method can be applied to any quantum system with single-qubit control.
View Article and Find Full Text PDF