Publications by authors named "Richard Kelso"

The studded outsole of a soccer boot provides additional traction to players to minimise the risk of slipping while performing high-speed manoeuvres. As excessive traction can lead to foot fixation and injury risk, there has been significant research surrounding the influence of stud configuration on the level of traction generated. This previous research, however, has predominately focused on the stud patterns, foot morphology and lower limb loading patterns of male players.

View Article and Find Full Text PDF

Background: Soccer boots are produced with different stud patterns and configurations to provide players with extra traction on specific surface types to minimize slipping and improve player performance. Excessive traction, however, can lead to foot fixation injuries, particularly anterior cruciate ligament tears.

Purpose/hypothesis: The purpose of this study was to explore the translational traction properties of 5 different outsole configurations moving in 4 different directions across both natural grass and artificial grass (AG) playing surfaces.

View Article and Find Full Text PDF

Soccer is played by a variety of individuals with varying abilities. The complicated lower limb movements involved within the game often lead to knee and ankle injuries, with anterior cruciate ligament injuries being the most severe with regard to rehabilitation time and ongoing health risks. This research explores the biomechanical kinematics of male and female soccer players on synthetic grass to determine whether trends in lower limb biomechanics over a variety of movements could explain injury risk.

View Article and Find Full Text PDF

This research provides a review of seated shot put alongside new data from the Tokyo 2020 Paralympic Games with the aim to understand the latest trends in equipment within a recently established rule set and how key equipment variables may impact performance for athletes in different classifications. First, a review of the literature found that the throwing pole is a key equipment aid that is not well understood, in part due to limitations in testing design. New data from the 2020 Paralympic Games showed inconsistent trends for the use of the throwing pole among athletes, particularly in transitionary classes (F33-34 and F54-55).

View Article and Find Full Text PDF

A series of measurements taken with two instrumented track bicycles in a velodrome are presented. The bicycle wheel speed, cadence, roll angle, steering angle, power, and airspeed are recorded. The experimentally-measured values are compared to existing theoretical models of roll and steering angles.

View Article and Find Full Text PDF

Injuries are common within military populations, with high incidence rates well established in the literature. Injuries cause a substantial number of working days lost, a significant cost through compensation claims and an increased risk of attrition. In an effort to address this, a considerable amount of research has gone into identifying the most prevalent types of injury and their associated risk factors.

View Article and Find Full Text PDF

The response of the boundary layer over an airfoil with cavity to external acoustic forcing, across a sweep of frequencies, was measured. The boundary layer downstream of the cavity trailing edge was found to respond strongly and selectively at the natural airfoil tonal frequencies. This is considered to be due to enhanced feedback.

View Article and Find Full Text PDF

In a chamber of the heart, large-scale vortices are shown to exist as the result of the dynamic blood flow and unique morphological changes of the chamber wall. As the cardiovascular flow varies over a cardiac cycle, there is a need for a robust quantification method to analyze its vorticity and circulation. We attempt to measure vortex characteristics by means of two-dimensional vorticity maps and vortex circulation.

View Article and Find Full Text PDF

Cardiovascular diseases can be diagnosed by assessing abnormal flow behavior in the heart. We introduce, for the first time, a magnetic resonance imaging-based diagnostic that produces sectional flow maps of cardiac chambers, and presents cardiac analysis based on the flow information. Using steady-state free precession magnetic resonance images of blood, we demonstrate intensity contrast between asynchronous and synchronous proton spins.

View Article and Find Full Text PDF

Phase contrast magnetic resonance imaging is performed to produce flow fields of blood in the heart. The aim of this study is to demonstrate the state of change in swirling blood flow within cardiac chambers and to quantify it for clinical analysis. Velocity fields based on the projection of the three dimensional blood flow onto multiple planes are scanned.

View Article and Find Full Text PDF

Background: Motion tracking based on spatial-temporal radio-frequency signals from the pixel representation of magnetic resonance (MR) imaging of a non-stationary fluid is able to provide two dimensional vector field maps. This supports the underlying fundamentals of magnetic resonance fluid motion estimation and generates a new methodology for flow measurement that is based on registration of nuclear signals from moving hydrogen nuclei in fluid. However, there is a need to validate the computational aspect of the approach by using velocity flow field data that we will assume as the true reference information or ground truth.

View Article and Find Full Text PDF

N-Acetylcysteine (NAC), being both a mucolytic agent and a thiol-containing antioxidant, may affect the establishment and maintenance of H. pylori infection within the gastric mucus layer and mucosa. Agar and broth dilution susceptibility tests determined the MIC of H.

View Article and Find Full Text PDF