Publications by authors named "Richard Keep"

Background: Intracerebral hemorrhage (ICH) often impacts patient white matter. However, preclinically, the effects of ICH are mostly studied in rodents with sparse white matter. This study used a lobar porcine ICH model to examine differences in the effects of ICH on white and gray matter as well as the role of the iron chelator deferoxamine (DFX), on attenuation of such injury.

View Article and Find Full Text PDF

Cerebrovascular injuries leading to edema and hemorrhage after ischemic stroke are common. The mechanisms underlying these events and how they are connected to known risk factors for poor outcome, like obesity and diabetes, is relatively unknown. Herein we demonstrate that increased adipose tissue lipolysis is a dominating risk factor for the development of a compromised cerebrovasculature in ischemic stroke.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the role of complement C1q in brain injury caused by intracerebral hemorrhage (ICH), contrasting the effects in wild-type (WT) and C1qa knockout (KO) mice.
  • Results show that while C1qa KO mice had less neutrophil infiltration and reduced brain damage after thrombin injection, they also experienced delayed hematoma clearance and increased neuronal damage over time.
  • The findings suggest that complement C1q has both advantageous and harmful effects on ICH, indicating that managing its role could lead to new treatment strategies for brain injuries.
View Article and Find Full Text PDF
Article Synopsis
  • Blood components from erythrolysis contribute to secondary brain injury and posthemorrhagic hydrocephalus (PHH) following intraventricular hemorrhage (IVH).
  • The study tested N-acetylheparin (NAH), a complement inhibitor, on aged rats to see its effects on erythrolysis, PHH, and iron buildup after IVH.
  • Results showed that NAH reduced complement activation, minimized brain injury, decreased ventricular volume, and lowered iron accumulation, suggesting it could be a therapeutic approach for managing complications from IVH.
View Article and Find Full Text PDF

Hematoma clearance is critical for mitigating intracerebral hemorrhage (ICH)-induced brain injury. Multinucleated giant cells (MGCs), a type of phagocyte, and the complement system may play a pivotal role in hematoma resolution, but whether the complement system regulates MGC formation after ICH remains unclear. The current study investigated the following: (1) the characteristics of MGC formation after ICH, (2) whether it was impacted by complement C3 deficiency in mice and (3) whether it also influenced hematoma degradation (hemosiderin formation).

View Article and Find Full Text PDF

Background: Intraventricular hemorrhage (IVH) and associated hydrocephalus are significant complications of intracerebral and subarachnoid hemorrhage. Despite proximity to IVH, the immune cell response at the choroid plexus (ChP) has been relatively understudied. This study employs CXCR-1 mice, which marks multiple immune cell populations, and immunohistochemistry to outline that response.

View Article and Find Full Text PDF

This review article discusses the role of MR imaging-based biomarkers in understanding and managing hemorrhagic strokes, focusing on intracerebral hemorrhage (ICH) and aneurysmal subarachnoid hemorrhage. ICH is a severe type of stroke with high mortality and morbidity rates, primarily caused by the rupture of small blood vessels in the brain, resulting in hematoma formation. MR imaging-based biomarkers, including brain iron quantification, ultra-early erythrolysis detection, and diffusion tensor imaging, offer valuable insights for hemorrhagic stroke management.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a critical interface separating the central nervous system from the peripheral circulation, ensuring brain homeostasis and function. Recent research has unveiled a profound connection between the BBB and circadian rhythms, the endogenous oscillations synchronizing biological processes with the 24-hour light-dark cycle. This review explores the significance of circadian rhythms in the context of BBB functions, with an emphasis on substrate passage through the BBB.

View Article and Find Full Text PDF

The endothelial lining of cerebral microvessels is damaged relatively early after cerebral ischemia/reperfusion (I/R) injury and mediates blood-brain barrier (BBB) disruption, neurovascular injury, and long-term neurological deficits. I/R induces BBB leakage within 1 h due to subtle structural alterations in endothelial cells (ECs), including reorganization of the actin cytoskeleton and subcellular redistribution of junctional proteins. Herein, we show that the protein peroxiredoxin-4 (Prx4) is an endogenous protectant against endothelial dysfunction and BBB damage in a murine I/R model.

View Article and Find Full Text PDF

Objective: The pathophysiology of posthemorrhagic hydrocephalus (PHH) is not well understood, but recent data suggest blood components play a significant role. This study aimed to understand the timing of membrane attack complex (MAC) activation after intraventricular hemorrhage (IVH) and the effect of MAC inhibition on PHH development.

Methods: This study was composed of four parts.

View Article and Find Full Text PDF

Intracerebral hemorrhage is primarily a disease of the elderly and it is frequently accompanied by intraventricular hemorrhage (IVH) which can lead to posthemorrhagic hydrocephalus and poor prognosis. Red blood cell iron has been implicated in brain injury after cerebral hemorrhage. The current study examined using T2* magnetic resonance imaging (MRI) to detect periventricular iron deposition after IVH and investigated the effects of minocycline on hydrocephalus in an aged rat IVH model.

View Article and Find Full Text PDF

Cerebral cavernous malformation type-3 (CCM3) is a type of brain vascular malformation caused by mutations in programmed cell death protein-10 (PDCD10). It is characterized by early life occurrence of hemorrhagic stroke and profound blood-brain barrier defects. The pathogenic mechanisms responsible for microvascular hyperpermeability and lesion progression in CCM3 are still largely unknown.

View Article and Find Full Text PDF

Background: Hydrocephalus constitutes a complex neurological condition of heterogeneous origin characterized by excessive cerebrospinal fluid (CSF) accumulation within the brain ventricles. The condition may dangerously elevate the intracranial pressure (ICP) and cause severe neurological impairments. Pharmacotherapies are currently unavailable and treatment options remain limited to surgical CSF diversion, which follows from our incomplete understanding of the hydrocephalus pathogenesis.

View Article and Find Full Text PDF

The glymphatic system is a recently identified route for exchanging parenchyma interstitial fluid and cerebrospinal fluid along perivascular space, facilitating brain waste clearance. Glymphatic system dysfunction has been reported in many neurological diseases. Here we discussed the possible role of glymphatic system in posthemorrhagic brain injury, especially posthemorrhagic hydrocephalus.

View Article and Find Full Text PDF

This mini-review describes the role of the solute carrier (SLC)15 family of proton-coupled oligopeptide transporters (POTs) and particularly Pept2 (Slc15A2) and PhT1 (Slc15A4) in the brain. That family transports endogenous di- and tripeptides and peptidomimetics but also a number of drugs. The review focuses on the pioneering work of David E.

View Article and Find Full Text PDF

Fluid homeostasis is fundamental for brain function with cerebral edema and hydrocephalus both being major neurological conditions. Fluid movement from blood into brain is one crucial element in cerebral fluid homeostasis. Traditionally it has been thought to occur primarily at the choroid plexus (CP) as cerebrospinal fluid (CSF) secretion due to polarized distribution of ion transporters at the CP epithelium.

View Article and Find Full Text PDF

Both monocyte-derived macrophages (MDMs) and brain resident microglia participate in hematoma resolution after intracerebral hemorrhage (ICH). Here, we utilized a transgenic mouse line with enhanced green fluorescent protein (EGFP) labeled microglia (Tmem119-EGFP mice) combined with a F4/80 immunohistochemistry (a pan-macrophage marker) to visualize changes in MDMs and microglia after ICH. A murine model of ICH was used in which autologous blood was stereotactically injected into the right basal ganglia.

View Article and Find Full Text PDF

This aim of this editorial is to highlight progress made in brain barrier and brain fluid research in 2022. It covers studies on the blood-brain, blood-retina and blood-CSF barriers (choroid plexus and meninges), signaling within the neurovascular unit and elements of the brain fluid systems. It further discusses how brain barriers and brain fluid systems are impacted in CNS diseases, their role in disease progression and progress being made in treating such diseases.

View Article and Find Full Text PDF