High-throughput transcriptomics (HTTr) uses gene expression profiling to characterize the biological activity of chemicals in in vitro cell-based test systems. As an extension of a previous study testing 44 chemicals, HTTr was used to screen an additional 1,751 unique chemicals from the EPA's ToxCast collection in MCF7 cells using 8 concentrations and an exposure duration of 6 h. We hypothesized that concentration-response modeling of signature scores could be used to identify putative molecular targets and cluster chemicals with similar bioactivity.
View Article and Find Full Text PDFToxicol Appl Pharmacol
October 2024
New approach methodologies (NAMs) aim to accelerate the pace of chemical risk assessment while simultaneously reducing cost and dependency on animal studies. High Throughput Transcriptomics (HTTr) is an emerging NAM in the field of chemical hazard evaluation for establishing in vitro points-of-departure and providing mechanistic insight. In the current study, 1201 test chemicals were screened for bioactivity at eight concentrations using a 24-h exposure duration in the human- derived U-2 OS osteosarcoma cell line with HTTr.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are found in many consumer and industrial products. While some PFAS, notably perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are developmentally toxic in mammals, the vast majority of PFAS have not been evaluated for developmental toxicity potential. A concentration-response study of 182 unique PFAS chemicals using the zebrafish medium-throughput, developmental vertebrate toxicity assay was conducted to investigate chemical structural identifiers for toxicity.
View Article and Find Full Text PDFAdaptive stress response pathways (SRPs) restore cellular homeostasis following perturbation but may activate terminal outcomes like apoptosis, autophagy, or cellular senescence if disruption exceeds critical thresholds. Because SRPs hold the key to vital cellular tipping points, they are targeted for therapeutic interventions and assessed as biomarkers of toxicity. Hence, we are developing a public database of chemicals that perturb SRPs to enable new data-driven tools to improve public health.
View Article and Find Full Text PDFChemicals assessment and management frameworks rely on regulatory toxicity values, which are based on points of departure (POD) identified following rigorous dose-response assessments. Yet, regulatory PODs and toxicity values for inhalation exposure (, reference concentrations [RfCs]) are available for only ∼200 chemicals. To address this gap, we applied a workflow to determine surrogate inhalation route PODs and corresponding toxicity values, where regulatory assessments are lacking.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are widely used, and their fluorinated state contributes to unique uses and stability but also long half-lives in the environment and humans. PFAS have been shown to be toxic, leading to immunosuppression, cancer, and other adverse health outcomes. Only a small fraction of the PFAS in commerce have been evaluated for toxicity using in vivo tests, which leads to a need to prioritize which compounds to examine further.
View Article and Find Full Text PDFThe rapid increase of publicly available chemical structures and associated experimental data presents a valuable opportunity to build robust QSAR models for applications in different fields. However, the common concern is the quality of both the chemical structure information and associated experimental data. This is especially true when those data are collected from multiple sources as chemical substance mappings can contain many duplicate structures and molecular inconsistencies.
View Article and Find Full Text PDFBackground: Per- and polyfluoroalkyl substances (PFAS) encompass a class of chemically and structurally diverse compounds that are extensively used in industry and detected in the environment. The US Environmental Protection Agency (US EPA) 2021 PFAS Strategic Roadmap describes national research plans to address the challenge of PFAS.
Objectives: Systematic Evidence Map (SEM) methods were used to survey and summarize available epidemiological and mammalian bioassay evidence that could inform human health hazard identification for a set of 345 PFAS that were identified by the US EPA's Center for Computational Toxicology and Exposure (CCTE) for toxicity and toxicokinetic assay testing and through interagency discussions on PFAS of interest.
The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells.
View Article and Find Full Text PDFMultiple new approach methods (NAMs) are being developed to rapidly screen large numbers of chemicals to aid in hazard evaluation and risk assessments. High-throughput transcriptomics (HTTr) in human cell lines has been proposed as a first-tier screening approach for determining the types of bioactivity a chemical can cause (activation of specific targets vs. generalized cell stress) and for calculating transcriptional points of departure (tPODs) based on changes in gene expression.
View Article and Find Full Text PDFThis work estimates benchmarks for new approach method (NAM) performance in predicting organ-level effects in repeat dose studies of adult animals based on variability in replicate animal studies. Treatment-related effect values from the Toxicity Reference database (v2.1) for weight, gross, or histopathological changes in the adrenal gland, liver, kidney, spleen, stomach, and thyroid were used.
View Article and Find Full Text PDFThe growing number of chemicals in the current consumer and industrial markets presents a major challenge for regulatory programs faced with the need to assess the potential risks they pose to human and ecological health. The increasing demand for hazard and risk assessment of chemicals currently exceeds the capacity to produce the toxicity data necessary for regulatory decision making, and the applied data is commonly generated using traditional approaches with animal models that have limited context in terms of human relevance. This scenario provides the opportunity to implement novel, more efficient strategies for risk assessment purposes.
View Article and Find Full Text PDFBackground: Regulatory toxicity values used to assess and manage chemical risks rely on the determination of the point of departure (POD) for a critical effect, which results from a comprehensive and systematic assessment of available toxicity studies. However, regulatory assessments are only available for a small fraction of chemicals.
Objectives: Using experimental animal data from the U.
Per- and Polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals that are in widespread use and present concerns for persistence, bioaccumulation and toxicity. Whilst a handful of PFAS have been characterised for their hazard profiles, the vast majority of PFAS have not been studied. The US Environmental Protection Agency (EPA) undertook a research project to screen ~150 PFAS through an array of different high throughput toxicity and toxicokinetic tests in order to inform chemical category and read-across approaches.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are a diverse group of man-made chemicals that are commonly found in body tissues. The toxicokinetics of most PFAS are currently uncharacterized, but long half-lives () have been observed in some cases. Knowledge of chemical-specific is necessary for exposure reconstruction and extrapolation from toxicological studies.
View Article and Find Full Text PDFScreening new compounds for potential bioactivities against cellular targets is vital for drug discovery and chemical safety. Transcriptomics offers an efficient approach for assessing global gene expression changes, but interpreting chemical mechanisms from these data is often challenging. Connectivity mapping is a potential data-driven avenue for linking chemicals to mechanisms based on the observation that many biological processes are associated with unique gene expression signatures (gene signatures).
View Article and Find Full Text PDFChemical risk assessment considers potentially susceptible populations including pregnant women and developing fetuses. Humans encounter thousands of chemicals in their environments, few of which have been fully characterized. Toxicokinetic (TK) information is needed to relate chemical exposure to potentially bioactive tissue concentrations.
View Article and Find Full Text PDFBackground: Per- and polyfluoroalkyl substances (PFAS) are a large class of synthetic (man-made) chemicals widely used in consumer products and industrial processes. Thousands of distinct PFAS exist in commerce. The 2019 U.
View Article and Find Full Text PDFThe United States Environmental Protection Agency has proposed a tiered testing strategy for chemical hazard evaluation based on new approach methods (NAMs). The first tier includes in vitro profiling assays applicable to many (human) cell types, such as high-throughput transcriptomics (HTTr) and high-throughput phenotypic profiling (HTPP). The goals of this study were to: (1) harmonize the seeding density of U-2 OS human osteosarcoma cells for use in both assays; (2) compare HTTr- versus HTPP-derived potency estimates for 11 mechanistically diverse chemicals; (3) identify candidate reference chemicals for monitoring assay performance in future screens; and (4) characterize the transcriptional and phenotypic changes in detail for all-trans retinoic acid (ATRA) as a model compound known for its adverse effects on osteoblast differentiation.
View Article and Find Full Text PDFBackground: The advent of high-throughput transcriptomic screening technologies has resulted in a wealth of publicly available gene expression data associated with chemical treatments. From a regulatory perspective, data sets that cover a large chemical space and contain reference chemicals offer utility for the prediction of molecular initiating events associated with chemical exposure. Here, we integrate data from a large compendium of transcriptomic responses to chemical exposure with a comprehensive database of chemical-protein associations to train binary classifiers that predict mechanism(s) of action from transcriptomic responses.
View Article and Find Full Text PDFThe Toxic Substances Control Act (TSCA) became law in the U.S. in 1976 and was amended in 2016.
View Article and Find Full Text PDFSummary: Many applications of chemical screening are performed in concentration or dose-response mode, and it is necessary to extract appropriate parameters, including whether the chemical/assay pair is active and if so, what are concentrations where activity is seen. Typically, multiple mathematical models or curve shapes are tested against the data to assess the best fit. There are several commercial programs used for this purpose as well as open-source libraries.
View Article and Find Full Text PDFRegulatory agencies world-wide face the challenge of performing risk-based prioritization of thousands of substances in commerce. In this study, a major effort was undertaken to compile a large genotoxicity dataset (54,805 records for 9299 substances) from several public sources (e.g.
View Article and Find Full Text PDFPurpose: Reducing chemical pressure on human and environmental health is an integral part of the global sustainability agenda. Guidelines for deriving globally applicable, life cycle based indicators are required to consistently quantify toxicity impacts from chemical emissions as well as from chemicals in consumer products. In response, we elaborate the methodological framework and present recommendations for advancing near-field/far-field exposure and toxicity characterization, and for implementing these recommendations in the scientific consensus model USEtox.
View Article and Find Full Text PDF